FDE 20GJ1151137 Rév A

D

Rev. : A Page 3 / 64

Version information

VERSION	DATE	MODIFICATION	COMPILED BY
1.0	2020-02-20	First edition	Erdős, Tóth
1.1	2020-04-24	The Contents table has been refreshed. The Line differential function was incorrectly there.	Seida
А	24/04/2020	ME Version	G.J

Rev. : A Page 4 / 64

CONTENTS

Introd	luction	5
App	plication General features	55
Cor	nfiguration variants	5
Me	eting the device	5
Functi	on and I/O listing	7
Softwa	are configuration	3
Pro	tection functions 8 Remote binary communication (REMBIN) 8 Synchrocheck function (SYN25) 10 Definite time undervoltage protection function (TUV27) 11 Line thermal protection function (TTR49L) 12 Definite time overvoltage protection function (TOV59) 11 Residual definite time overvoltage protection function (TOV59N) 16 Auto-reclose protection function (REC79HV) 16 Over-frequency protection function (TOF81) 22 Underfrequency protection function (TUF81) 24 Rate of change of frequency protection function (FRC81) 25 Automatic tap-changer controller function 27	33)347393457
	Atrol & supervision functions 34 Circuit breaker control function block (CB1Pol) 34 Circuit breaker wear monitoring function (CBWear) 35 Disconnector control function (DisConn) 44 Ethernet Links function (Ethlinks) 44 Dead line detection function (DLD) 44 Voltage transformer supervision function (VTS60) 44 Current unbalance function (VCB60) 45	117)2157
Me	asuring functions	3)251
EVE	ent recorder	2

INTRODUCTION

The DVEZ product type is a member of the **Protecta** product line, proposed by Microener. The **Protecta** complex protection in respect of hardware and software is a modular device. The modules are assembled and configured according to the requirements, and then the software determines the functions. This manual describes the DVEZ product type.

Application

The DVEZ products are configured for bay control unit applications on the transmission and distribution network. They provide full control for any type of switchgears (including the interlocking functions) and other substation applications. The DVEZ factory configurations implement the basic functionality, but you can add optional functions to increase functionality of the device

The main functions of the DVEZ type are control functions, such as switchgear control, user-defined command functions, event generating functions, GOOSE handler functions etc. Each device is specialized to each application. There are further the optional functions' list includes the following functions :

- Breaker failure protection
- Synchrocheck
- Automatic reclosing function for HV/MV networks
- Automatic voltage regulator (AVR) / tap change control
- Remote binary signal transmission
- Voltage protection functions
- Thermal protection
- Load shedding functions

The EuroCAP configuration tool, which is available free of charge, offers an user-friendly and flexible application for protection, control and measurement functions to ensure that the IED-EP+ devices are fully customizable.

General features

- Native IEC 61850 IED with Edition 2 compatibility
- Scalable hardware to adapt to different applications
- 84 HP or 42TE wide rack size (height: 3U)
- The factory configuration can be customized to the user's specification with the powerful EuroCAP tool
- Flexible protection and control functionality to meet special customer requirements
- Advanced HMI functionality via color touchscreen and embedded WEB server, extended measuring, control and monitoring functions
- User configurable LCD user screens, which can display SLDs (Single Line Diagrams) with switchgear
 position indication and control as well as measuring values and several types of controllable objects.
- Various protection setting groups available
- Enhanced breaker monitoring and control
- Several mounting methods : Rack; Flush mounting; Semi-flush mounting; Wall mounting; Wall-mounting with terminals; Flush mounting with IP54 rated cover.
- Wide range of communication protocols :
 - Ethernet-based communication : IEC61850; IEC60870-5-104; DNP3.0 TCP; Modbus TCP
 - \circ ~ Serial communication : DNP3.0; IEC60870-5-101/103; MODBUS, SPA ~
- The Protecta family can handle several communication protocols simultaneously.
- Built-in self-monitoring to detect internal hardware or software errors
- Different time sources available: NTP server; Minute pulse; Legacy protocol master; IRIG-B000 or IRIG-B12X.

Page 6 / 64

Configuration variants

The number and the functionality of the members of each product type is put together according to the application philosophy, keeping in mind the possible main usages. The available configurations of the DVEZ type are listed in the table below.

VARIANT	MAIN APPLICATION
E1-BCUr	Bay control unit with optional binary I/O, RTD, AIC or ATO modules only
E2-BCU	Special bay control unit with analogue measurements (CT, VT)

Table 0-1 The members of the DVEZ type

Meeting the device

Each configuration of has its own basic hardware arrangement according to the contained functions. The remaining free slots are filled up according to the user's requirements during ordering.

The technical specification of the hardware of the device (detailed descriptions of the modules, compliance to the IEC standards, etc.) is in the document "*Hardware description*". Please contact Microener <u>info@microener.com</u>.

The devices are made in two sizes, see the pictures below.

Figure 0-1 The 84TE (19") rack of Protecta family

Figure 0-2 The 42TE (1/2*19") rack of Protecta family

The basic information for working with the **Protecta** devices are described in the document "**Operating Manual and Troubleshooting Guide**". Please contact Microener : info@microener.com

FUNCTION AND I/O LISTING

The functions listed in Table 0-1 on the next page are the ones that are present most commonly in the configurations, thus they can be considered as factory default arrangements. The hardware information corresponds to the maximum available number of digital I/O, and the default number of analog inputs.

For short descriptions for each function please refer to Chapter « Software configuration ».

In the following table the INST column represents the number of instances of each function. Here it does not contain any exact number, as they are all optional.

The \checkmark * sign represents a default function if its required hardware module is present.

Transmission line protection, control & automation								
				FAMILY	Euro	Prot+		
		TYPE	DVEZ					
		CC	NFIGU	RATION	E1	E2		
ш			C	T inputs				
/AR			V	T inputs				
MA D_		Digit	tal inpu	ts (max)				
HAR	:	Signaling rela	y outpu	ts (max)				
<u> </u>		Fast Tri	p outpu	ts (max)				
	Function name	IEC	ANSI	*INST.	E1	E2		
	Circuit breaker control			*	×	 Image: A second s		
	Circuit breaker wear			*		 ✓* 		
	Disconnector control			۰	 Image: A second s	 Image: A second s		
	Current measurement			۲		✓*		
	Voltage measurement			*		 ✓* 		
	Line measurement			*		✓*		
	Average and maximum measurement			*		✓*		
≥	Synchrocheck	SYNC	25	۰	×	Op.		
ALI'	Definite time undervoltage protection	U <, U <<	27	*	 Image: A second s	Op.		
NO	Thermal protection line	T >	49	*	 Image: A second s	Op.		
Ē	Definite time overvoltage protection	U >, U >>	59	٠	 Image: A second s	Op.		
S	Residual overvoltage protection	Uo >, Uo >>	59N	*	×	Op.		
ш	Fuse failure (VTS)		60	*	 Image: A second s	✓*		
	Current unbalance protection		60	*	 Image: A second s	✓*		
	Auto-reclose HV/MV	0 - > 1	79	*	Op.	Op.		
	Automatic voltage regulator (AVR) / tap change control		90V	*		Op.		
	Remote binary communication		85	۰	Op.	Op.		
	Overfrequency protection	f>, f>>	810	٠		Op.		
	Underfrequency protection	f <, f <<	81U	*		Op.		
	Rate of change of frequency protection	df/dt	81R	*		Op.		
	Ethernet Links			*	Op.	Op.		

Table 0-1 Basic functionality and I/O

SOFTWARE CONFIGURATION

Protection functions

Remote binary communication (REMBIN)

The protection functions which apply data communication between the line ends (e.g. line differential protection) usually offer free communication channels for the user to fill with available binary signals which can be useful also at the remote end.

If the communication channel is available but the line differential protection function is not configured in the device then this RemBin (<u>Rem</u>ote <u>Bin</u>ary Communication) function block offers the free communication channels for the user.

The Protecta protection devices communicate via fiber optic cables. Generally, mono-mode cables are required, but for distances below 2 km a multi-mode cable may be sufficient. The line differential protection can be applied up to the distance of 120 km. (The limiting factor is the damping of the fiber optic channel : up to 30 dB is permitted to prevent the disturbance of operation.)

The 16 binary input signals to be sent to the remote device can be assigned freely by the user with the help of the graphic logic editor. Similarly, the 16 binary output signals can be applied by the user in the graphic logic editor. These signals are listed in the tables below.

In case of communication errors concerning single data, the line differential protection function is tolerant. Repeated errors are recognized and the function is disabled. This fact is signaled by the "CommFail" output signal. The application of this signal is the task of the user; it can be assigned in the graphic logic editor.

In error state, if healthy signals are resumed, then the system restarts operation automatically.

Technical data

Function	Accuracy			
Operate time accuracy	±5% or ±15 ms, whichever is greater			

Table 0-1 Technical data of the REMBIN function

Parameters

The function has no parameters.

Binary output status signals

Binary status signal	Title	Explanation
REMBIN_ Rec01_ GrI_	ChRec01	Output status signal on Channel01 received from the remote end
REMBIN_Rec02_GrI_	ChRec02	Output status signal on Channel02 received from the remote end
REMBIN_Rec03_GrI_	ChRec03	Output status signal on Channel03 received from the remote end
REMBIN_Rec04_GrI_	ChRec04	Output status signal on Channel04 received from the remote end
REMBIN_ Rec05 _GrI_	ChRec05	Output status signal on Channel05 received from the remote end
REMBIN_ Rec06 _GrI_	ChRec06	Output status signal on Channel06 received from the remote end
REMBIN_ Rec07 _GrI_	ChRec07	Output status signal on Channel07 received from the remote end
REMBIN_ Rec08 _GrI_	ChRec08	Output status signal on Channel08 received from the remote end
REMBIN_Rec09_GrI_	ChRec09	Output status signal on Channel09 received from the remote end
REMBIN_ Rec10 _GrI_	ChRec10	Output status signal on Channel10 received from the remote end
REMBIN_ Rec11 _GrI_	ChRec11	Output status signal on Channel11 received from the remote end
REMBIN_ Rec12 _GrI_	ChRec12	Output status signal on Channel12 received from the remote end
REMBIN_ Rec13 _GrI_	ChRec13	Output status signal on Channel13 received from the remote end
REMBIN_ Rec14 _GrI_	ChRec14	Output status signal on Channel14 received from the remote end
REMBIN_ Rec15 _GrI_	ChRec15	Output status signal on Channel15 received from the remote end
REMBIN_Rec16_GrI_	ChRec15	Output status signal on Channel16 received from the remote end
REMBIN_CommFail_GrI_	CommFail	Signal indicating the communication failure

Table 0-2 Binary output status signals of the REMBIN function

Binary input status signals

The binary input status signals are the results of logic equations graphically edited by the user.

Binary input signals	Signal title	Explanation
REMBIN_Send01_GrO_	Send01	Input signal on Channel 01 to be sent to the remote end
REMBIN_Send02_GrO_	Send02	Input signal on Channel 02 to be sent to the remote end
REMBIN_Send03_GrO_	Send03	Input signal on Channel 03 to be sent to the remote end
REMBIN_Send04_GrO_	Send04	Input signal on Channel 04 to be sent to the remote end
REMBIN_Send05_GrO_	Send05	Input signal on Channel 05 to be sent to the remote end
REMBIN_Send06_GrO_	Send06	Input signal on Channel 06 to be sent to the remote end
REMBIN_Send07_GrO_	Send07	Input signal on Channel 07 to be sent to the remote end
REMBIN_Send08_GrO_	Send08	Input signal on Channel 08 to be sent to the remote end
REMBIN_Send09_GrO_	Send09	Input signal on Channel 09 to be sent to the remote end
REMBIN_Send10_GrO_	Send10	Input signal on Channel 10 to be sent to the remote end
REMBIN_Send11_GrO_	Send11	Input signal on Channel 11 to be sent to the remote end
REMBIN_Send12_GrO_	Send12	Input signal on Channel 12 to be sent to the remote end
REMBIN_Send13_GrO_	Send13	Input signal on Channel 13 to be sent to the remote end
REMBIN_Send14_GrO_	Send14	Input signal on Channel 14 to be sent to the remote end
REMBIN_Send15_GrO_	Send15	Input signal on Channel 15 to be sent to the remote end
REMBIN_Send16_GrO_	Send16	Input signal on Channel 16 to be sent to the remote end

Table 0-3 Binary input status signals of the REMBIN function

Synchrocheck function (SYN25)

Several problems can occur in the electric power system if the circuit breaker closes and connects two systems operating asynchronously. The high current surge can cause damage in the interconnecting elements, the accelerating forces can overstress the shafts of rotating machines or, at last, the actions taken by the protective system can result in the unwanted separation of parts of the electric power system.

To prevent such problems, this function checks whether the systems to be interconnected are operating synchronously. If yes, then the close command is transmitted to the circuit breaker. In case of asynchronous operation, the close command is delayed to wait for the appropriate vector position of the voltage vectors on both sides of the circuit breaker. If the conditions for safe closing cannot be fulfilled within an expected time, then closing is declined.

The conditions for safe closing are as follows :

- The difference of the voltage magnitudes is below the declared limit,
- The difference of the frequencies is below the declared limit and
- The angle difference between the voltages on both sides of the circuit breaker is within the declared limit.

The function processes both automatic reclosing and manual close commands.

The limits for automatic reclosing and manual close commands can be set independently of each other.

The function compares the voltage of the line and the voltage of one of the bar sections (Bus1 or Bus2). The bus selection is made automatically based on a binary input signal defined by the user applying the graphic equation editor.

As to voltages : any phase-to-ground or phase-to-phase voltage can be selected.

The function processes the signals of the voltage transformer supervision function and enables the close command only in case of plausible voltages.

There are three modes of operation :

- Energizing check :
 - Dead bus, live line,
 - Live bus, dead line,
 - Any Energizing Case (including Dead bus, dead line).
- Synchro check (Live line, live bus)
- Synchro switch (Live line, live bus)

If the conditions for "Energizing check" or "Synchro check" are fulfilled, then the function generates the release command, and in case of a manual or automatic close request, the close command is generated.

If the conditions for energizing or synchronous operation are not met when the close request is received, then synchronous switching is attempted within the set time-out. In this case, the rotating vectors must fulfill the conditions for safe switching within the declared waiting time : at the moment the contacts of the circuit breaker are closed, the voltage vectors must match each other with appropriate accuracy. For this mode of operation, the expected operating time of the circuit breaker must be set as a parameter value, to generate the close command in advance taking the relative vector rotation speed into consideration.

The started checking procedure can be interrupted by a cancel command defined by the user in the graphic equation editor.

In "bypass" operation mode, the function generates the release signals and simply transmits the close command.

The function can be started by the switching request signals initiated both the automatic reclosing and the manual closing. The binary input signals are defined by the user, applying the graphic equation editor.

Blocking signal of the function are defined by the user, applying the graphic equation editor.

Blocking signal of the voltage transformer supervision function for all voltage sources are defined by the user, applying the graphic equation editor.

Signal to interrupt (cancel) the automatic or the manual switching procedure are defined by the user, applying the graphic equation editor.

Function	Effective range	Accuracy in the effective range		
Rated Voltage Un	100/200V, parameter setting			
Voltage effective range	10-110 % of Un	±1% of Un		
Frequency	47.5 – 52.5 Hz	±10 mHz		
Phase angle		±3 °		
Operate time	Setting value	±3 ms		
Reset time	<50 ms			
Reset ratio	0.95 Un			

Technical data

DVEZ Bay Control Unit Operation Manual

Page 11 / 64

Parameters

inumerated parameters								
Parameter name	Title	Selection range	Default					
Selection of the processed voltage								
SYN25_VoltSel_EPar_ Voltage Select L1-N,L2-N,L3-N,L1-L2,L2-L3,L3-L1								
Operation mode for automatic swi	tching							
SYN25_OperA_EPar_	Operation Auto	Off, On, ByPass	On					
Enabling/disabling automatic sync	hro switching							
SYN25_SwOperA_EPar_	SynSW Auto	Off, On	On					
Energizing mode for automatic switching								
SYN25 EnOperA EPar	Eneraizina Auto	Off, DeadBus LiveLine, LiveBus DeadLine,	DeadBus					
		Any energ case	LiveLine					
Operation mode for manual switch	ning							
SYN25_OperM_EPar_	Operation Man	Off, On, ByPass	On					
Enabling/disabling manual synchro	o switching							
SYN25_SwOperM_EPar_	SynSW Man	Off, On	On					
Energizing mode for manual switc	Energizing mode for manual switching							
SYN25 EnOnerM EPar	Energizing Man	Off, DeadBus LiveLine, LiveBus DeadLine, Any	DeadBus					
		energ case	LiveLine					

Table 0-5 The enumerated parameters of the synchro check / synchro switch function

Page 12 / 64

Integer parameters							
Parameter name	Title	Unit	Min	Max	Step	Default	
Voltage limit for "live line" detection							
SYN25_LiveU_IPar_	U Live	%	60	110	1	70	
Voltage limit for "dead line" detection	n						
SYN25_DeadU_IPar_	U Dead	%	10	60	1	30	
Voltage difference for automatic syr	nchro checking mode						
SYN25_ChkUdA_IPar_	Udiff SynCheck Auto	%	5	30	1	10	
Voltage difference for automatic syr	Voltage difference for automatic synchro switching mode						
SYN25_SwUdA_IPar_	Udiff SynSW Auto	%	5	30	1	10	
Phase difference for automatic swite	ching						
SYN25_MaxPhDiffA_IPar_	MaxPhaseDiff Auto	deg	5	80	1	20	
Voltage difference for manual synch	ro checking mode						
SYN25_ChkUdM_IPar_	Udiff SynCheck Man	%	5	30	1	10	
Voltage difference for manual synch	Voltage difference for manual synchro switching mode						
SYN25_SwUdM_IPar_	Udiff SynSW Man	%	5	30	1	10	
Phase difference for manual switchi	ng						
SYN25_MaxPhDiffM_IPar_	MaxPhaseDiff Man	deg	5	80	1	20	

Table 0-6 The integer parameters of the synchro check / synchro switch function

Floating point parameters								
Parameter name Title	Dim.	Min	Max	Default				
Frequency difference for automatic synchro checking mode								
SYN25_ChkFrDA_FPar_ FrDiff S	ynCheck Auto Hz	0.02	0.5	0.02				
Frequency difference for automatic synchro switching mode								
SYN25_SwFrDA_FPar_ FrDiff S	ynSW Auto Hz	0.10	1.00	0.2				
Frequency difference for manual synchro che	ecking mode							
SYN25_ChkFrDM_FPar_ FrDiff S	ynCheck Man Hz	0.02	0.5	0.02				
Frequency difference for manual synchro switching mode								
SYN25_SwFrDM_FPar_ FrDiff S	ynSW Man Hz	0.10	1.00	0.2				

Table 0-7 The floating point parameters of the synchro check / synchro switch function

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default	
Breaker operating time at closing							
SYN25_CBTrav_TPar_	Breaker Time	msec	0	500	1	80	
Impulse duration for close command							
SYN25_SwPu_TPar_	Close Pulse	msec	10	60000	1	1000	
Maximum allowed switching time							
SYN25_MaxSw_TPar_	Max Switch Time	msec	100	60000	1	2000	

Table 0-8 The timer parameters of the synchro check / synchro switch function

info@microener.com

+33(0)1 48 15 09 09

Bay Control Unit Operation Manual

Definite time undervoltage protection function (TUV27)

DVEZ

The definite time undervoltage protection function measures the RMS values of the fundamental Fourier component of three phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TUV27 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage is below the preset starting level parameter setting value and above the defined blocking level.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The operation mode can be chosen by the type selection parameter. The function can be disabled, and can be set to "1 out of 3", "2 out of 3", and "All".

The overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Tecl	nnica	l data

Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
$U > \rightarrow Un$	50 ms	
$U > \rightarrow 0$	40 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 0-9 Technical data of the definite time undervoltage protection function

Parameters

Enumerated parameter						
Parameter name	Title	Selection range	Default			
Parameter for type selection						
TUV27_Oper_EPar_	Operation	Off, 1 out of 3, 2 out of 3, All	1 out of 3			
Table 0-10. The enumerated parameter of the definite time undervoltage protection function						

Table 0-10 The enumerated parameter of the definite time undervoltage protection function

Integer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Starting voltage level setting						
TUV27_StVol_IPar_	Start Voltage	%	30	130	1	52
Blocking voltage level setting						
TUV27_BlkVol_IPar_	Block Voltage	%	0	20	1	10

Table 0-11 The integer parameters of the definite time undervoltage protection function

9	Default
t Signal Only	FALSE
t	Signal Only

Table 0-12 The boolean parameter of the definite time undervoltage protection function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the undervoltage protection function.						
TUV27_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 0-13 The timer parameter of the definite time undervoltage protection function

Line thermal protection function (TTR49L)

Basically, line thermal protection measures the three sampled phase currents. RMS values are calculated and the temperature calculation is based on the highest RMS value of the phase currents.

The temperature calculation is based on the step-by-step solution of the thermal differential equation. This method yields "overtemperature", meaning the temperature above the ambient temperature. Accordingly, the temperature of the protected object is the sum of the calculated "overtemperature" and the ambient temperature.

If the calculated temperature (calculated "overtemperature"+ambient temperature) is above the threshold values, alarm, trip and restart blocking status signals are generated.

For correct setting, the following values must be measured and set as parameters: rated load current is the continuous current applied for the measurement, rated temperature is the steady state temperature at rated load current, base temperature is the temperature of the environment during the measurement and the time constant is the measured heating/cooling time constant of the exponential temperature function.

When energizing the protection device, the algorithm permits the definition of the starting temperature as the initial value of the calculated temperature. The parameter Startup Term. is the initial temperature above the temperature of the environment as compared to the rated temperature above the temperature of the environment

The ambient temperature can be measured using e.g. a temperature probe generating electric analog signals proportional to the temperature. In the absence of such measurement, the temperature of the environment can be set using the dedicated parameter TTR49L_Amb_IPar_ (Ambient Temperature). The selection between parameter value and direct measurement is made by setting the binary Boolean parameter.

The problem of metal elements (the protected line) exposed to the sun is that they are overheated as compared to the "ambient" temperature even without a heating current; furthermore, they are cooled mostly by the wind and the heat transfer coefficient is highly dependent on the effects of the wind. As the overhead lines are located in different geographical environments along the tens of kilometers of the route, the effects of the sun and the wind cannot be considered in detail. The best approximation is to measure the temperature of a piece of overhead line without current but exposed to the same environmental conditions as the protected line itself.

The application of thermal protection of the overhead line is a better solution than a simple overcurrent-based overload protection because thermal protection "remembers" the preceding load states of the line and the setting of the thermal protection does not need so a high security margin between the permitted current and the permitted continuous thermal current of the line. In a broad range of load states and in a broad range of ambient temperatures this permits the better exploitation of the thermal and consequently current carrying capacity of the line.

The thermal differential equation to be solved is:

$$\frac{d\Theta}{dt} = \frac{1}{T} \left(\frac{I^2(t)R}{hA} - \Theta \right), \text{ and the definition of the heat time constant is: } T = \frac{cm}{hA}$$

In this differential equation:

I(t) (RMS)heating current, the RMS value usually changes over time;

R	, 0	resistance of the line;
с		specific heat capacity of the conductor;
m		mass of the conductor;
θ		rise of the temperature above the temperature of the environment;
h		heat transfer coefficient of the surface of the conductor;
Α		area of the surface of the conductor;
t		time.

The solution of the thermal differential equation for constant current is the temperature as the function of time (the mathematical derivation of this equation is described in a separate document):

$$\Theta(t) = \frac{I^2 R}{hA} \left(1 - e^{-\frac{t}{T}} \right) + \Theta_o e^{-\frac{t}{T}}$$

where

 Θ_{o} is the starting temperature.

Remember that the calculation of the measurable temperature is as follows:

Temperature(t) = $\Theta(t)$ +Temp_ambient

where Temp_ambient is the

is the ambient temperature.

In a separate document it is proven that some more easily measurable parameters can be introduced instead of the aforementioned ones. Thus, the general form of equation above is:

$$H(t) = \frac{\Theta(t)}{\Theta_n} = \frac{I^2}{I_n^2} \left(1 - e^{-\frac{t}{T}} \right) + \frac{\Theta_o}{\Theta_n} e^{-\frac{t}{T}}$$

where:

MICR ENER

info@microener.com

+33(0)1 48 15 09 09

DVEZ Bay Control Unit Operation Manual

H(t)	is the "thermal level" of the heated object, this is the temperature as a percentage of the Θ_n reference temperature. (This is a dimensionless quantity but it can also be expressed in a percentage form.)
Θn	is the reference temperature above the temperature of the environment, which can be measured in steady state, in case of a continuous I_n reference current.
In	is the reference current (can be considered as the nominal current of the heated object). If it flows continuously, then the reference temperature can be measured in steady state.
$rac{\Theta_o}{\Theta_n}$	is a parameter of the starting temperature related to the reference temperature

The RMS calculations modul calculate the RMS values of the phase currents individually. The sampling frequency of the calculations is 1 kHz; therefore, theoretically, the frequency components below 500Hz are considered correctly in the RMS values. This module is not part of the thermal overload function; it belongs to the preparatory phase.

The Max selection module selects the maximal value of the three RMS phase currents.

The Thermal replica module solves the first order thermal differential equation using a simple step-by-step method and compares the calculated temperature to the values set by parameters. The temperature sensor value proportional to the ambient temperature can be an input (this signal is optional, defined at parameter setting).

The function can be disabled by parameter, or generates a trip pulse if the calculated temperature exceeds the trip value, or generates a trip signal if the calculated temperature exceeds the trip value given by a parameter but it resets only if the temperature cools below the "Unlock temperature".

The line thermal protection function has two binary input signals. The conditions of the input signal are defined by the user, applying the graphic equation editor. One of the signals can block the line thermal protection function, the other one can reset the accumulated heat and set the temperature to the defined value for the subsequent heating test procedure.

Technical data	
Function	Accuracy
Operate time at I>1.2*Itrip	<3 % or < <u>+</u> 20 ms

	Table 0-14	Technical	' data of th	e line thermal	protection	function
--	------------	-----------	--------------	----------------	------------	----------

Parameters Enumerated narameter

ľ

Enumerated parameter			
Parameter name	Title	Selection range	Default
Parameter for mode of operation			
TTR49L_Oper_EPar_	Operation	Off, Pulsed, Locked	Pulsed

Table 0-15 The enumerated parameter of the line thermal protection function

The meaning of the enumerated values is as follows:

the function is switched off; no output status signals are generated; Off

		<i>'</i> '	5	5	,	
Pulsed	the function generates a	trip pulse if the	calculated ter	mperature e	exceeds the trip value	
Locked	the function generates a	trip signal if the	e calculated te	emperature	exceeds the trip value.	. It resets
	only if the temperature of	cools below the "	Unlock tempe	erature".		

Integer parameters Title Unit Min Max Default **Parameter name** Step Alarm Temperature TTR49L_Alm_IPar_ Alarm Temperature deg 60 200 80 1 Trip Temperature TTR49L_Trip_IPar_ Trip Temperature 60 200 100 deg 1 Rated Temperature TTR49L_Max_IPar_ Rated Temperature deg 60 200 100 1 Base Temperature deg TTR49L_Ref_IPar_ Base Temperature 0 40 25 1 Unlock Temperature 200 TTR49L_Unl_IPar Unlock Temperature deg 20 1 60 Ambient Temperature 40 TTR49L_Amb_IPar_ Ambient Temperature deg 0 1 25 Startup Term. TTR49L_Str_IPar % 60 Startup Term 0 1 0 Rated Load Current Rated Load Current % 20 150 100 TTR49L_Inom_IPar 1 Time constant TTR49L_pT_IPar Time Constant 999 10 min 1 1

Table 0-16 The integer parameters of the line thermal protection function

Boolean parameter

Boolean parameter	Signal title	Selection range	Default	
Parameter for ambient temperature sensor application				
TTR49L_Sens_BPar_	Temperature Sensor	No, Yes	No	

Table 0-17 The boolean parameter of the line thermal protection function

Definite time overvoltage protection function (TOV59)

The definite time overvoltage protection function measures three voltages. The measured values of the characteristic quantity are the RMS values of the basic Fourier components of the phase voltages.

The Fourier calculation inputs are the sampled values of the three phase voltages (UL1, UL2, UL3), and the outputs are the basic Fourier components of the analyzed voltages (UL1Four, UL2Four, UL3Four). They are not part of the TOV59 function; they belong to the preparatory phase.

The function generates start signals for the phases individually. The general start signal is generated if the voltage in any of the three measured voltages is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The overvoltaget protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Technical data

Function	Value	Accuracy
Pick-up starting accuracy		< ± 0,5 %
Blocking voltage		< ± 1,5 %
Reset time		
$U < \rightarrow Un$	60 ms	
$U < \rightarrow 0$	50 ms	
Operate time accuracy		< ± 20 ms
Minimum operate time	50 ms	

Table 0-18 Technical data of the definite time overvoltage protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default
Enabling or disabling the overvoltage protection function			
TOV59_Oper_EPar_	Operation	Off, On	On

Table 0-19 The enumerated parameter of the definite time overvoltage protection function

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Voltage level setting. If the measured voltage is above the setting value, the function generates a start signal.						
TOV59_StVol_IPar_	Start Voltage	%	30	130	1	63

Table 0-20 The integer parameter of the definite time overvoltage protection function

Boolean parameter Title Default Parameter name Title Default Enabling start signal only: TOV59_StOnly_BPar_ Start Signal Only TOV59_StOnly_BPar_ Start Signal Only FALSE

Table 0-21 The boolean parameter of the definite time overvoltage protection function

Timer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay of the overvoltage protection function.						
TOV59_Delay_TPar_	Time Delay	ms	0	60000	1	100

Table 0-22 The timer parameter of the definite time overvoltage protection function

Accuracy < ± 2 %

Default

Residual definite time overvoltage protection function (TOV59N)

The residual definite time overvoltage protection function operates according to definite time characteristics, using the RMS values of the fundamental Fourier component of the zero sequence voltage (UN=3Uo).

The Fourier calculation inputs are the sampled values of the residual or neutral voltage (UN=3Uo) and the outputs are the RMS value of the basic Fourier components of those.

The function generates start signal if the residual voltage is above the level defined by parameter setting value.

The function generates a trip command only if the definite time delay has expired and the parameter selection requires a trip command as well.

The residual overvoltage protection function has a binary input signal, which serves the purpose of disabling the function. The conditions of disabling are defined by the user, applying the graphic equation editor.

Function	Value
Pick-up starting accuracy	2 - 8 % 8 - 60 %

Pick-up starting accuracy	8 - 60 %	< ± 1.5 %
Reset time		
$U > \rightarrow Un$	60 ms	
$U > \rightarrow 0$	50 ms	
Operate time	50 ms	< + 20 ms

Table 0-23 Technical data of the residual definite time overvoltage protection function

Parameters

and an an an an an

Enumerated parameter				
Parameter name	Title	Selection range	Default	
Parameter for enabling/disabling:				
TOV59N_Oper_EPar_	Operation	Off, On	On	

Table 0-24 The enumerated parameter of the residual definite time overvoltage protection function

Integer parameter					
Parameter name	Title	Unit	Min	Max	Step
Starting voltage parameter:					

% 2 30 TOV59N_StVol_IPar_ Start Voltage 60 1 Table 0-25 The integer parameter of the residual definite time overvoltage protection function

Boolean parameter		
Parameter name	Title	Default
Enabling start signal only:		
TOV59N_StOnly_BPar_	Start Signal Only	FALSE

Table 0-26 The boolean parameter of the residual definite time overvoltage protection function

limer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Definite time delay:						
TOV59N_Delay_TPar_	Time Delay	ms	0	60000	1	100
T () 0 0 7 1 (<i>a</i>	11		<i>c</i>	

Table 0-27 The time parameter of the residual definite time overvoltage protection function

+33(0)1 48 15 09 09

DVEZ Bay Control Unit Operation Manual

Auto-reclose protection function (REC79HV)

The HV automatic reclosing function for high voltage networks can realize up to four shots of reclosing. The dead time can be set individually for each reclosing and separately for single-phase faults and for multi-phase faults.

The starting signal of the cycles can be generated by any combination of the protection functions or external signals of the binary inputs. The selection is made by graphic equation programming.

The automatic reclosing function is triggered if as a consequence of a fault a protection function generates a trip command to the circuit breaker and the protection function resets because the fault current drops to zero or the circuit breaker's auxiliary contact signals open state. According to the preset parameter values, either of these two conditions starts counting the dead time, at the end of which the HV automatic reclosing function generates a close command automatically. If the fault still exists or reappears, then within the "Reclaim time" started at the close command the protection functions picks up again and the subsequent cycle is started. If no pickup is detected within this time, then the HV automatic reclosing cycle resets and a new fault will start the procedure with the first cycle again.

At the moment of generating the close command, the circuit breaker must be ready for operation, which is signaled via a binary input (CB Ready). The Boolean parameter ", CB State Monitoring" enables the function. The preset parameter value (CB Supervision time) decides how long the HV automatic reclosing function is allowed to wait at the end of the dead time for this signal. If the signal is not received during this dead time extension, then the HV automatic reclosing function terminates.

Depending on binary parameter settings, the automatic reclosing function block can accelerate trip commands of the individual reclosing cycles. This function needs user-programmed graphic equations to generate the accelerated trip command.

In case of a manual close command which is assigned to the logic variable "Manual Close" using graphic equation programming, a preset parameter value decides how long the HV automatic reclosing function should be disabled after the manual close command.

The duration of the close command depends on preset parameter value "Close command time", but the close command terminates if any of the protection functions issues a trip command.

The HV automatic reclosing function can control up to four reclosing cycles. Depending on the preset parameter value "Reclosing cycles", there are different modes of operation:

Disabled	No automatic reclosing is selected,
1. Enabled	Only one automatic reclosing cycle is selected,
1.2. Enabled	Two automatic reclosing cycles are activated,
1.2.3. Enabled	Three automatic reclosing cycles are activated,
1.2.3.4. Enabled	All automatic reclosing cycles are activated.

The function can be switched Off /On using the parameter "Operation"

The user can also block the HV automatic reclosing function applying the graphic equation editor. The binary status variable to be programmed is "Block".

Depending on the present parameter value "Reclosing started by", the HV automatic reclosing function can be started either by resetting of the TRIP command or by the binary signal indicating the open state of the circuit breaker.

If the reset state of the TRIP command is selected to start the HV automatic reclosing function, then the conditions are defined by the user applying the graphic equation editor. The binary status variable to be programmed is "AutoReclosing Start".

If the open state of the circuit breaker is selected to start the HV automatic reclosing function, then additionally to programming the "AutoReclosing Start" signal, the conditions for detecting the open state of the CB are defined by the user applying the graphic equation editor.

For all four reclosing cycles, separate dead times can be defined for single-phase-reclosing after single-phase trip commands (as a consequence of single-phase faults) and for three-phase-reclosing after three-phase trip commands (as a consequence of multi-phase faults).

The different dead time settings of single-phase-reclosing and three-phase-reclosing can be justified as follows: in case of a single-phase fault, only the circuit breakers of the faulty phase open. In this case, due to the capacitive coupling of the healthy phases, the extinction of the secondary arc at the fault location can be delayed. Consequently, a longer dead time is needed for the fault current to die out than in the case of a three-phase open state, when no coupled voltage can sustain the fault current.

From other point of view, in case of a transmission line connecting two power systems, only a shorter dead time is allowed for the three-phase open state because, due to the possible power unbalance between the interconnected systems, a large angle difference can be reached if the dead time is too long. If only a single phase is open, then the two connected healthy phases and the ground can sustain the synchronous operation of both power systems.

Special dead time can be necessary if a three-phase fault arises near either substation of a line and the protection system operates without tele-protection. If the three-phase dead time is too short, the HV automatic reclosing may

attempt to close the circuit breaker during the running time of the second zone trip at the other side. Consequently, a prolonged dead time is needed if the fault was detected in the first zone.

Dead time reduction may be applicable if healthy voltage is measured in all three phases during the dead time, this means that no fault exists on the line. In this case, the expiry of the normal dead time need not be waited for; a reclosing attempt can be initiated immediately.

If, during the cycles, the three-phase dead time is applied once, then all subsequent cycles will consider the threephase dead time settings, too.

Three-phase reclosing can be disabled by a preset parameter value.

At the end of the dead time, reclosing is possible only if the circuit breaker can perform the command. The conditions are defined by the user applying the graphic equation editor.

Reclosing is possible only if the conditions required by the "synchro-check" function are fulfilled. The conditions are defined by the user applying the graphic equation editor. The HV automatic reclosing function waits for a preprogrammed time for this signal. This time is defined by the user. If the "SYNC Release" signal is not received during the running time of this timer, then the "synchronous switch" operation is started.

The separate function controls the generation of the close command in case of relatively rotating voltage vectors on both sides of the open circuit breaker to make contact at the synchronous state of the rotating vectors. For this calculation, the closing time of the circuit breaker must be defined.

When the close command is generated, a timer is started to measure the "Reclaim time". If the fault is detected again during this time, then the sequence of the HV automatic reclosing cycles continues. If no fault is detected, then at the expiry of the reclaim time the reclosing is evaluated as successful and the function resets. If fault is detected after the expiry of this timer, then the cycles restart with the first reclosing cycle.

If the manual close command is received during the running time of any of the cycles, then the HV automatic reclosing function resets.

After a manual close command, the HV automatic reclosing function does not operate for the time period defined by a parameter.

In case of evolving faults i.e. when a detected single-phase fault changes to multi-phase fault, the behavior of the automatic reclosing function is controlled by the preset parameter value "Evolving fault". The options are "Block Reclosing" or "Start 3Ph Rec."

Depending on binary parameter settings, the automatic reclosing function block can accelerate trip commands of the individual reclosing cycles.

Tec	hnica	l data

Function	Accuracy	
Operating time	$\pm 1\%$ of setting value or ± 30 ms	
Table 0.30 Tablesian data af the wate of a water realized from them		

Table 0-28 Technical data of the rate of auto-reclose function

Parameters

Linumerated parameters						
Parameter name	Title	Selection range	Default			
Switching ON/OFF the HV automatic	atic reclosing func	tion				
REC79_Op_EPar_	Operation	Off, On	On			
Selection of the number of reclos	ing sequences					
REC79_CycEn_EPar_	Reclosing Cycles	Disabled, 1. Enabled, 1.2. Enabled, 1.2.3. Enabled, 1.2.3.4. Enabled	1. Enabled			
Selection of triggering the dead t	ime counter (trip	signal reset or circuit breaker open position)				
REC79_St_EPar_	Reclosing Started by	Trip reset, CB open	Trip reset			
Selection of behavior in case of evolving fault (block reclosing or perform three-phase automatic reclosing cycle)						
REC79_EvoFlt_EPar_	Evolving Fault	Block Reclosing, Start 3Ph Rec.	Block Reclosing			
Table 0.2	Table 0.20 The any merated presentation of the vate of oute vertees function					

Table 0-29 The enumerated parameters of the rate of auto-reclose function

DVEZ **Bay Control Unit Operation Manual**

Rev. : A Page 21 / 64

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Dead time setting for the first rec	losing cycle for single-phase fault					
REC79_1PhDT1_TPar_	1. Dead Time 1Ph	msec	0	100000	10	500
Dead time setting for the second	reclosing cycle for single-phase fau	ılt				
REC79_1PhDT2_TPar_	2. Dead Time 1Ph	msec	10	100000	10	600
Dead time setting for the third rea	closing cycle for single-phase fault					
REC79_1PhDT3_TPar_	3. Dead Time 1Ph	msec	10	100000	10	700
Dead time setting for the fourth r	eclosing cycle for single-phase fau	lt				
REC79_1PhDT4_TPar_	4. Dead Time 1Ph	msec	10	100000	10	800
Dead time setting for the first rec	losing cycle for multi-phase fault					
REC79_3PhDT1_TPar_1	1. Dead Time 3Ph	msec	0	100000	10	1000
Special dead time setting for the	first reclosing cycle for multi-phase	fault				
REC79_3PhDT1_TPar_2	1. Special DT 3Ph	msec	0	100000	10	1350
Dead time setting for the second	reclosing cycle for multi-phase fau	lt				
REC79_3PhDT2_TPar_	2. Dead Time 3Ph	msec	10	100000	10	2000
Dead time setting for the third rea	closing cycle for multi-phase fault					
REC79_3PhDT3_TPar_	3. Dead Time 3Ph	msec	10	100000	10	3000
Dead time setting for the fourth r	eclosing cycle for multi-phase fault					
REC79_3PhDT4_TPar_	4. Dead Time 3Ph	msec	10	100000	10	4000
Reclaim time setting						
REC79_Rec_TPar_	Reclaim Time	msec	100	100000	10	2000
Impulse duration setting for the C	CLOSE command					
REC79_Close_TPar_	Close Command Time	msec	10	10000	10	100
Setting of the dynamic blocking ti	me					
REC79_DynBlk_TPar_	Dynamic Blocking Time	msec	10	100000	10	1500
Setting of the blocking time after	manual close command					
REC79_MC_TPar_	Block after Man.Close	msec	0	100000	10	1000
Setting of the action time (max. a	llowable duration between protect	ion start and	d trip)			
REC79_Act_TPar_	Action Time	msec	0	20000	10	1000
Limitation of the starting signal (t	rip command is too long or the CB	open signal	received	too late)		
REC79_MaxSt_TPar_	Start Signal Max Time	msec	0	10000	10	1000
Max. delaying the start of the dea	d-time counter					
REC79_DtDel_TPar_	DeadTime Max Delay	msec	0	100000	10	3000
Waiting time for circuit breaker re	ady to close signal					
REC79_CBTO_TPar_	CB Supervision Time	msec	10	100000	10	1000
Waiting time for synchronous stat	e signal					
REC79_SYN1_TPar_	Syn Check Max Time	msec	500	100000	10	10000
Waiting time for synchronous swit	tching signal					
REC79_SYN2_TPar_	SynSw Max Time	msec	500	100000	10	10000

SynSw Max Timemsec50010000010Table 0-30 The timer parameters of the rate of auto-reclose function

Boolean parameters

Parameter name	Title	Default	Explanation
REC79 CBState BPar	CB State Monitoring	0	Enable CB state monitoring for "Not Ready"
	02 0 cate : ionitoring		state
REC79_3PhRecBlk_BPar_	Disable 3Ph Rec.	0	Disable three-phase reclosing
REC79_Acc1_BPar_	Accelerate 1.Trip	0	Accelerate trip command at starting cycle 1
REC79_Acc2_BPar_	Accelerate 2.Trip	0	Accelerate trip command at starting cycle 2
REC79_Acc3_BPar_	Accelerate 3.Trip	0	Accelerate trip command at starting cycle 3
REC79_Acc4_BPar_	Accelerate 4.Trip	0	Accelerate trip command at starting cycle 4
REC79_Acc5_BPar_	Accelerate FinTrip	0	Accelerate final trip command

Table 0-31 The boolean parameters of the rate of auto-reclose function

Over-frequency protection function (TOF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value. The over-frequency protection function is usually applied to decrease generation to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of high frequency can be one of the indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchro-switch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The over-frequency protection function generates a start signal if at least five measured frequency values are above the preset level.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The over-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function.

Technical data

Function	Range	Accuracy	
Operate range	40 - 70 Hz	30 mHz	
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz	
Operate time		min 140 ms	
Time delay	140 – 60000 ms	± 20 ms	
Reset ratio		0.99	

Table 0-32 Technical data of the over-frequency protection function

Parameters

Enumerated parameter

Parameter name	Title	Selection range	Default
Selection of the operating mode			
TOF81_Oper_EPar_	Operation	Off,On	On

Table 0-33 The enumerated parameter of the over-frequency protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TOF81_StOnly_BPar_	Start Signal Only	FALSE

Table 0-34 The boolean parameter of the over-frequency protection function

Float point parameter

Parameter name	Title	Unit	Min	Мах	Step	Default
Setting value of the comparison						
TOF81_St_FPar_	Start Frequency	Hz	40	60	0.01	51

Table 0-35 The float point parameter of the over-frequency protection function

Timer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TOF81_Del_TPar_	Time Delay	msec	100	60000	1	200

Table 0-36 The timer parameter of the over-frequency protection function

Underfrequency protection function (TUF81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is small compared to the consumption by the load connected to the power system, then the system frequency is below the rated value. The under-frequency protection function is usually applied to increase generation or for load shedding to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of low frequency can be one of the indications of island operation.

Accurate frequency measurement is also the criterion for the synchro-check and synchro-switch functions.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The under-frequency protection function generates a start signal if at least five measured frequency values are below the setting value.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The under-frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the under-frequency protection function. **Technical data**

Function	Range	Accuracy	
Operate range	40 - 70 Hz	30 mHz	
Effective range	45 - 55 Hz / 55 - 65 Hz	2 mHz	
Operate time		min 140 ms	
Time delay	140 – 60000 ms	± 20 ms	
Reset ratio		0,99	

Table 0-37 Technical data of the under-frequency protection function

Parameters

	Enumerated parameter								
Parameter name		Title	Selection range	Default					
	Selection of the operating mode								
	TUF81_Oper_EPar_	Operation	Off, On	On					

Table 0-38 The enumerated parameter of the under-frequency protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
TUF81_StOnly_BPar_	Start Signal Only	FALSE

Table 0-39 The boolean parameter of the under-frequency protection function

Float point parameter

Parameter name	Title	Unit	Min	Max	Digits	Default
Preset value of the comparison						
TUF81_St_FPar_	Start Frequency	Hz	40	60	0.01	49

Table 0-40 The float point parameter of the under-frequency protection function

Timer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
TUF81_Del_TPar_	Time Delay	ms	100	60000	1	200

Table 0-41 The timer parameter of the under-frequency protection function

Rate of change of frequency protection function (FRC81)

The deviation of the frequency from the rated system frequency indicates unbalance between the generated power and the load demand. If the available generation is large compared to the consumption by the load connected to the power system, then the system frequency is above the rated value, and if it is small, the frequency is below the rated value. If the unbalance is large, then the frequency changes rapidly. The rate of change of frequency protection function is usually applied to reset the balance between generation and consumption to control the system frequency.

Another possible application is the detection of unintended island operation of distributed generation and some consumers. In the island, there is low probability that the power generated is the same as consumption; accordingly, the detection of a high rate of change of frequency can be an indication of island operation.

Accurate frequency measurement is also the criterion for the synchro-switch function.

The source for the rate of change of frequency calculation is an accurate frequency measurement.

In some applications, the frequency is measured based on the weighted sum of the phase voltages.

The accurate frequency measurement is performed by measuring the time period between two rising edges at zero crossing of a voltage signal. For the acceptance of the measured frequency, at least four subsequent identical measurements are needed. Similarly, four invalid measurements are needed to reset the measured frequency to zero. The basic criterion is that the evaluated voltage should be above 30% of the rated voltage value.

The rate of change of frequency protection function generates a start signal if the df/dt value is above the setting value. The rate of change of frequency is calculated as the difference of the frequency at the present sampling and at three periods earlier.

Time delay can also be set.

The function can be enabled/disabled by a parameter.

The rate of change of frequency protection function has a binary input signal. The conditions of the input signal are defined by the user, applying the graphic equation editor. The signal can block the rate of change of frequency protection function.

Technical data

Function	Effective range	Accuracy	
Operating range	-50.05 and +0.05 - +5 Hz/sec		
Pick-up accuracy		±20 mHz/sec	
Operate time	min 140 ms		
Time delay	140 – 60000 ms	<u>+</u> 20 ms	

Table 0-42 Technical data of the rate of change of frequency protection function

Parameters

Enumerated parameter Title Selection range Default Selection of the operating mode FRC81_Oper_EPar_ Operation Off,On On

Table 0-43 The enumerated parameter of the rate of change of frequency protection function

Boolean parameter

Parameter name	Title	Default
Enabling start signal only:		
FRC81_StOnly_BPar_	Start Signal Only	True

Table 0-44 The boolean parameter of the rate of change of frequency protection function

Page 26 / 64

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Setting value of the comparison						
FRC81_St_FPar_	Start df/dt	Hz/sec	-5	5	0.01	0.5
Table 0-45 The float point parameter of the rate of change of frequency protection function						

Timer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
FRC81_Del_TPar_	Time Delay	msec	100	60000	1	200

Table 0-46 The timer parameter of the rate of change of frequency protection function

Automatic tap-changer controller function

One criterion for power quality is to keep the voltage of selected points of the networks within the prescribed limits. The most common mode of voltage regulation is the application of transformers with on-load tap changers. When the transformer is connected to different taps, its turns ratio changes and supposing constant primary voltage, the secondary voltage can be increased or decreased as required.

Voltage control can take the actual load state of the transformer and the network into consideration. As a result, the voltage of a defined remote point of the network is controlled assuring that neither consumers near the busbar nor consumers at the far ends of the network get voltages out of the required range.

The voltage control function can be performed automatically or, in manual mode of operation, the personnel of the substation can set the network voltage according to special requirements.

The automatic tap changer controller function can be applied to perform this task.

The automatic tap changer controller function receives the following analog inputs:

UL1L2	Line-to-line voltage of the controlled secondary side of the transformer
IL1L2	Difference of the selected line currents of the secondary side of the transformer for voltage drop
	compensation
IHV	Maximum of the phase currents of the primary side of the transformer for limitation purposes

The parameter "U Correction" permits fine tuning of the measured voltage.

The function performs the following internal checks before control operation (see Figure below):

- If the voltage of the controlled side UL1L2 is above the value set by the parameter "U High Limit", then control to increase the voltage is disabled.
- If the voltage of the controlled side UL1L2 is below the value set by the parameter "U Low Limit", then control to decrease the voltage is disabled.
- If the voltage of the controlled side UL1L2 is below the value set by the parameter "U Low Block", then the transformer is considered to be de-energized and automatic control is completely disabled.
- If the current of the supply side IHV is above the limit set by the parameter "I Overload", then both automatic and manual controls are completely disabled. This is to protect the switches inside the tap changer.

Automatic control mode

Voltage compensation in automatic control mode

The function gets the Fourier components of the busbar voltage and those of the current:

- UL1L2_{Re} and UL1L2_{Im}
- IL1L2_{Re} and IL1L2_{Im}

In automatic control mode the voltage of the controlled side *UL1L2* is compensated by the current of the controlled side *IL1L2*. This means that the voltage of the "load center" of the network is controlled to be constant, in fact within a narrow range. This assures that neither the voltage near to the busbar is too high, nor the voltage at far-away points of the network is too low. The voltage of the "load center", i.e. the controlled voltage is calculated as:

$$|Ucontrol| = |Ubus - Udrop|$$

There are two compensation modes to be selected: "AbsoluteComp" and "ComplexComp".

• If the parameter "Compensation" is set to "AbsoluteComp", the calculation method is as follows:

In this simplified method the vector positions are not considered correctly, the formula above is approximated with the magnitudes only:

$$|Ucontrol| = |Ubus - Udrop| \approx |Ubus| - |Udrop| \approx |Ubus| - |I| * (R)CompoundFactor$$

where

(*R*) Compound Factor is a parameter value.

If the current is above the value defined by the parameter "I Comp Limit", then in the formulas above this preset value is considered instead of the higher values measured.

The method is based on the experiences of the network operator. Information is needed: how much is the voltage drop between the busbar and the "load center" if the load of the network is the rated load. The parameter "(R) Compound Factor" means in this case the voltage drop in percent.

• If the parameter "Compensation" is set to "ComplexComp", the calculation method is as follows:

In this simplified method the vector positions are partly considered. In the formula above the voltage drop is approximated with the component of the voltage drop, the direction of which is the same as the direction of the bus voltage vector. (This is "length component" of the voltage drop; the "perpendicular component" of the voltage drop is neglected.)

 $|Ucontrol| = |Ubus - [IL1L2_{Re} * (R)CompoundFactor - IL1L2_{Im} * XCompoundFactor]|$

where

(R) Compound Factor	is a parameter value
X Compound Factor	is a parameter value

The voltage of the "load center" of the network is controlled to be within a narrow range. This assures that neither the voltage near to the busbar is too high, nor the voltage at far-away points of the network is too low.

The method is based on the estimated complex impedance between the busbar and the "load center".

The parameter ``(R) Compound Factor" means in this case the voltage drop in percent, caused by the real component of the rated current.

The parameter "X Compound Factor" means in this case the voltage drop in percent, caused by the imaginary component of the rated current.

NOTE: if the active power flows from the network to the busbar then in "AbsoluteComp" mode no compounding is performed.

Figure 0-1 Voltage settings for the automatic tap changer function

Voltage checking in automatic control mode

In automatic control mode the calculated | *Ucontrol* | voltage is checked to see if it is outside the limits. The limits are defined by parameter values:

U Set	is the setting value defining the centre of the permitted range
U Deadband	is the width of the permitted range in both + and – directions
Deadband Hysteresis	is the hysteresis decreasing the permitted range of the "U Deadband" after
	the generation of the control command.

If the calculated | Ucontrol | voltage is outside the limits, then timers are started.

In an emergency state of the network, when the network elements are overloaded, the Uset value can be driven to two lower values defined by the parameters "Voltage Reduction 1" and "Voltage Reduction 2". "U Set" is decreased by the parameter values if the binary inputs "VRed 1" or "VRed 2" enter into active state. These inputs must be programmed graphically by the user.

Time delay in automatic control mode

In automatic control mode the first and every subsequent control command is processed separately.

For the first control command:

The voltage difference is calculated:

Udiff= |Ucontrol- Uset|

If this difference is above the U Deadband value, and depending on the setting of parameter "T1 Delay Type", three different timing modes can be selected:

- "Definite" this definite time delay is defined by parameter T1
 - "Inverse" standard IDMT characteristic defined by the parameters:
 - T1 maximum delay defined by the parameter
 - U Deadband is the width of the permitted range in both + and directions
 - Min Delay minimum time delay

$$Tdelay = \frac{T1}{\left(\frac{Udiff}{Udeadband}\right)}$$
, but minimum Min Delay

"2powerN"

$$Tdelay = T1 * 2^{\left(1 - \frac{Udiff}{Udsadband}\right)}$$

The binary parameters "Fast Lower Enable" and/or "Fast Higher Enable" enable fast command generation if the voltage is above the parameter value "U High Limit" or below the "U Low Limit". In this case, the time delay is a definite time delay defined by parameter "T2".

For subsequent control commands:

In this case, the time delay is always a definite time delay defined by parameter "T2" if the subsequent command is generated within the "Reclaim time" defined by a parameter.

The automatic control mode can be blocked by a binary signal received via binary input "AutoBlk" and generates a binary output signal "AutoBlocked (ext)"

Manual control mode

In manual mode, the automatic control is blocked. The manual mode can be "Local" or "Remote". For this mode, the input "Manual" needs to be in active state (as programmed by the user).

In the local mode, the input "Local" needs to be in active state. The binary inputs "ManHigher" or "ManLower" must be programmed graphically by the user.

In the remote mode, the input "Remote" needs to be in active state as programmed by the user. In this case manual commands are received via the communication interface.

Command generation and tap changer supervision

The software module "CMD&TC SUPERV" is responsible for the generation of the "HigherCmd" and "LowerCmd" command pulses, the duration of which is defined by the parameter "Pulse Duration". This is valid both for manual and automatic operation.

The tap changer supervision function receives the information about the tap changer position in six bits of the binary inputs "Bit0 to Bit5". The value is decoded according to the enumerated parameter "CodeType", the values of which can be: Binary, BCD or Gray. During switchover, for the transient time defined by the parameter "Position Filter", the position is not evaluated.

The parameters "Min Position" and "Max Position" define the upper and lower limits. In the upper position, no further increasing command is generated and the output "Max Pos Reached" becomes active. Similarly, in the lower position, no further decreasing command is generated and the output "Min Pos Reached" becomes active.

The function also supervises the operation of the tap changer. Depending on the setting of parameter "TC Supervision", three different modes can be selected:

- TCDrive the supervision is based on the input "TCRun". In this case, after command generation the drive is expected to start operation within one quarter of the value defined by the parameter "Max Operating Time" and it is expected to perform the command within "Max Operating Time"
- Position the supervision is based on the tap changer position in six bits of the binary inputs "Bit0 to Bit5". It is checked if the tap position is incremented in case of a voltage increase, or the tap position is decremented in case of a voltage decrease, within the "Max Operating Time".
- Both in this mode the previous two modes are combined.

In case of an error detected in the operation of the tap changer, the "Locked" input becomes active and no further commands are performed. To enable further operation, the input "Reset" must be programmed for an active state by the user.

Technical data		
Function	Range	Accuracy
Voltage measurement	50 % < U < 130 %	<1%
Definite time delay		<2% or ±20 ms, whichever is greater
Inverse and "2powerN" time delay	12 % < U < 25%	<5%
	25 % < U < 50%	<2% or ±20 ms, whichever is greater

Table 0-47 Technical data of the automatic tap changer controller function

+33(0)1 48 15 09 09

DVEZ Bay Control Unit Operation Manual

Page 32 / 64

Parameters

Enumerated parameters							
Parameter name	Title	Selection range	Default				
Control model, according to IEC 61850							
ATCC_ctlMod_EPar_	ControlModel	Direct normal, Direct enhanced, SBO enhanced	Direct normal				
Select before operate class, acco	rding to IEC 61850						
ATCC_sboClass_EPar_	sboClass	Operate-once, Operate-many	Operate-once				
Parameter for general blocking of the function							
ATCC_Oper_EPar_	Operation	Off,On	Off				
Parameter for time delay mode s	election						
ATCC_T1Type_EPar_	T1 Delay Type	Definite, Inverse, 2powerN	Definite				
Selection for compensation mode							
ATCC_Comp_EPar_	Compensation	Off, AbsoluteComp, ComplexComp Off					
Tap changed supervision mode selection							
ATCC_TCSuper_EPar_	TC Supervision	Off, TCDrive, Position, Both	Off				
Decoding of the position indicator bits							
ATCC_CodeType_EPar	CodeType	Binary, BCD, Gray	Binary				

Table 0-48 The enumerated parameters of the automatic tap changer controller function

Boolean parameters			
Parameter name	Title	Explanation	Default
ATCC_FastHigh_BPar_	Fast Higher Enable	Enabling fast higher control command	0
ATCC_FastLow_BPar_	Fast Lower Enable	Enabling fast lower control command	0

Table 0-49 The boolean parameters of the automatic tap changer controller function

Integer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Code value of the minimum position						
ATCC_MinPos_Ipar_	Min Position		1	32	1	1
Code value of the maximum position						
ATCC_MaxPos_Ipar_	Max Position		1	32	1	32

Table 0-50 The integer parameters of the automatic tap changer controller function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Time limit for tap-change operation						
ATCC_TimOut_TPar_	Max Operating Time	msec	1000	30000	1	5000
Command impulse duration						
ATCC_Pulse_TPar_	Pulse_TPar_ Pulse Duration			10000	1	1000
Time overbridging the transient state of	the tap changer status signals	5				
ATCC_MidPos_TPar_	Pos_TPar_ Position Filter msec 1000 30000 1				3000	
Select before operate timeout, according	to IEC 61850					
ATCC_SBOTimeout_TPar_	SBO Timeout	msec	1000	20000	1	5000

Table 0-51 The timer parameters of the automatic tap changer controller function

Rev. : A Page 33 / 64

Float point parameters						
Parameter name	Title	Unit	Min	Max	Digits	Default
Factor for fine tuning the measure	ed voltage:					
ATCC_Ubias_FPar_	U Correction	-	0.950	1.050	3	1.000
Set-point for voltage regulation, re	elated to the rated voltage (valid	at I=0):				
ATCC_USet_FPar_	U Set	%	80.0	115.0	1	100.0
Dead band for voltage regulation,	related to the rated voltage:					
ATCC_UDead_FPar_	U Deadband	%	0.5	9.0	1	3.0
Hysteresis value for the dead ban	d, related to the dead band:					
ATCC_DeadHyst_FPar_	Deadband Hysteresis	%	60	90	0	85
Parameter for the current comper	isation:					
ATCC_URinc_FPar_	(R) Compound Factor	%	0.0	15.0	1	5.0
Parameter for the current comper	isation:					
ATCC_UXinc_FPar_	X Compound Factor	%	0.0	15.0	1	5.0
Reduced set-point 1 for voltage re	gulation (priority), related to the	e rated volta	ge:			
ATCC_VRed1_FPar_	Voltage Reduction 1	%	0.0	10.0	1	5.0
Reduced set-point 2 for voltage re	gulation, related to the rated vo	ltage:				
ATCC_VRed2_FPar_	Voltage Reduction 2	%	0.0	10.0	1	5.0
Maximum current value to be con	sidered in current compensation	formulas:				
ATCC_ICompLim_FPar_	I Comp Limit	%	0.00	150	0	1
Current upper limit to disable all o	peration:					
ATCC_IHVOC_FPar_	I Overload	%	50	150	0	100
Voltage upper limit to disable step) up:.					
ATCC_UHigh_FPar_	U High Limit	%	90.0	120.0	1	110.0
Voltage lower limit to disable step	down:					
ATCC_ULow_FPar_	U Low Limit	%	70.0	110.0	1	90.0
Voltage lower limit to disable all o	peration:					
ATCC_UBlock_FPar_	U Low Block	%	50.0	100.0	1	70.0
Time delay for the first control co	nmand generation:					
ATCC_T1_FPar_	T1	sec	1.0	600.0	1	10.0
Definite time delay for subsequen	t control command generation or	r fast operat	ion (if it is e	nabled):		-
ATCC_T2_FPar_	T2	sec	1.0	100.0	1	10.0
In case of dependent time charac	teristics, this is the minimum tim	e delay	-			-
ATCC_MinDel_FPar_	Min Delay	sec	1.0	100.0	1	10.0
After a control command, if the vo	oltage is out of the range within	the reclaim	time, then th	ne command	l is generate	d after T2
time delay			-			
ATCC_Recl_FPar_	Reclaim Time	sec	1.0	100.0	1	10.0

Table 0-52 The float parameters of the automatic tap changer controller function

Control & supervision functions

Circuit breaker control function block (CB1Pol)

The Circuit breaker control function block can be used to integrate the circuit breaker control of the Protecta device into the station control system and to apply active scheme screens of the local LCD of the device.

The Circuit breaker control function block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the circuit breaker. It processes the status signals received from the circuit breaker and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- The signals and commands of the synchro check / synchro switch function block can be integrated into the
 operation of the function block.
- Interlocking functions can be programmed by the user applying the inputs "EnaOff" (enabled trip command) and "EnaOn" (enabled close command), using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
 - All necessary timing tasks are performed within the function block:
 - Time limitation to execute a command
 - Command pulse duration
 - Filtering the intermediate state of the circuit breaker
 - Checking the synchro check and synchro switch times
 - Controlling the individual steps of the manual commands
- Sending trip and close commands to the circuit breaker (to be combined with the trip commands of the protection functions and with the close command of the automatic reclosing function; the protection functions and the automatic reclosing function directly gives commands to the CB). The combination is made graphically using the graphic equation editor
- Operation counter

0

Event reporting

The Circuit breaker control function block has binary input signals. The conditions are defined by the user applying the graphic equation editor. The signals of the circuit breaker control are seen in the binary input status list.

Technical data	
Function	Accuracy
Operate time accuracy	±5% or ±15 ms, whichever is greater

Table 0-53 Technical data of the circuit breaker control function

DVEZ Bay Control Unit Operation Manual

Parameters Enumerated parameter

Parameter name	Title	Selection range	Default			
The control model of the circuit breaker node according to the IEC 61850 standard						
CB1Pol_ctlMod_EPar_	ControlModel*	Direct normal, Direct enhanced, SBO enhanced	Direct normal			

*ControlModel

only command transmission

- Direct enhanced:
- Direct normal: • SBO enhanced:

command transmission with status check and command supervision

Select Before Operate mode with status check and command supervision

Table 0-54 Enumerated parameter of the circuit breaker control function

Boolean parameter

Boolean parameter	Title	Explanation
CB1Pol_DisOverR_BPar_	Forced check	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard

Table 0-55 Boolean parameter of the circuit breaker control function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Timeout for signaling failed operation						
CB1Pol_TimOut_TPar_	Max.Operating time	msec	10	1000	1	200
Duration of the generated On and Off imp	oulse					
CB1Pol_Pulse_TPar_,	Pulse length	msec	50	500	1	100
Waiting time, at expiry intermediate state	of the CB is reported					
CB1Pol_MidPos_TPar_ Max.Intermediate time		msec	20	30000	1	100
Length of the time period to wait for the o	conditions of the synchron st	ate. After expi	ry of this t	ime, the syr	nchro swite	ch procedure
is initiated (see synchro check/ synchro sy	vitch function block descripti	on)				
CB1Pol_SynTimOut_TPar_	Max.SynChk time	msec	10	5000	1	1000
Length of the time period to wait for the	synchro switch impulse (see	synchro check	k/ synchro	switch func	tion block	description).
After this time the function resets, no swit	ching is performed					
CB1Pol_SynSWTimOut_TPar_	Max.SynSW time*	msec	0	60000	1	0
Duration of the waiting time between obje	ect selection and command s	election. At tir	neout no d	command is	performed	1
CB1Pol SBOTimeout TPar	SBO Timeout	msec	1000	20000	1	5000

* If this parameter is set to 0, then the "StartSW" output is not activated

Table 0-56 Timer parameters of the circuit breaker control function

Page 36 / 64

Available internal status variable and command channel

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the circuit breaker. Different graphic symbols can be assigned to the values. (See Chapter 3.2 of the document "EuroCAP configuration tool for Protecta devices").

Status variable	Title	Explanation	
CB1Pol_stVal_Ist_	Status	Can be: 0: Intermediate 1: Off 2: On	

Table 0-57 Integer status variable of the circuit breaker control function

The available control channel to be selected is:

Command channel	Title	Explanation
CB1Pol_Oper_Con_	Operation	Can be: On Off

Table 0-58 Control channel of the circuit breaker control function

Using this channel, the pushbuttons on the front panel of the device can be assigned to close or open the circuit breaker. These are the "Local commands".

Circuit breaker wear monitoring function (CBWear)

If a circuit breaker interrupts a current, the electric arc between the contacts results some metal loss. If the metal loss due to the burning of the electric arc becomes substantial, the contacts must be replaced.

Manufacturers define the permitted number of short circuits by formulas such as:

$$\sum_{i=1}^{n} I_i^k = CycNum$$

where

n = number of short circuits

k = exponent, calculated by the algorithm, based on the parameters

I =short-circuit current, kA (RMS)

CycNum = total value of weighted breaking currents.

Similar information is conveyed by the diagram below. This shows the number of permitted interruptions (logarithmic scaling) versus short-circuit current (logarithmic scaling).

Number of interruptions

Example: Number of permitted interruptions as the function of the interrupted current

The straight line of the curve is defined by two points:

- The number of permitted interruptions of 1 kA current, by parameter "CycNum 1kA"
- The permitted number of interruptions of the rated breaking current of the circuit breaker by parameter "CycNum – I Rated Trip". The rated breaking current of the circuit breaker is set by parameter "Rated Trip Current"

The circuit breaker wear monitoring function processes the Fourier basic harmonic component of the three phase currents.

The circuit breaker wear monitoring function finds the maximum value of the phase current of each interruption and calculates the wear caused by the operation performed. If the sum of the calculated wear reaches the limit, a warning signal is generated. This indicates the time of the required preventive maintenance of the circuit breaker.

The procedure of monitoring starts at the receipt of a trip command on the dedicated input (Trip). For the start of this procedure, the circuit breaker also needs to be in closed state. This signal is received on the dedicated binary input (CB Closed).

The procedure of identifying the maximum phase current value terminates when the current falls below the minimum current defined by the parameter Min Current AND the circuit breaker gets in open position. This signal is received on the dedicated binary input (CB Open).

The procedure also stops if the time elapsed since its start exceeds 1 s. In this case no CB wear is calculated.

Based on the characteristic defined above, the function calculates the wear caused by the operation performed. If the sum of the calculated wear reaches the limit defined by the parameter "CycNum – Alarm", a warning signal is generated (Alarm). This indicates the advised time of the preventive maintenance of the circuit breaker.

The accumulated "wear" of the circuit breaker is stored on non-volatile memory; therefore, the value is not lost even if the power supply of the devices is switched off.

This information is displayed among the on-line data as "Actual wear". This counter indicates how many 1 kA equivalent switches were performed since the last maintenance (reset).

When preventive maintenance is performed, the accumulated "wear" of the circuit breaker must be reset to 0 to start a new maintenance cycle. The circuit breaker wear monitoring function offers two ways of resetting:

- Binary True signal programmed to the "Reset" input of the function
- Performing a direct command via the Commands menu of the supervising WEB browser (for details, see the "Protecta manual", "Remote user interface description" document).

The inputs of the circuit breaker wear monitoring function are

- the Fourier components of three phase currents,
- binary inputs,
- parameters

The **output** of the circuit breaker wear monitoring function is

• the Alarm binary output status signal.

Technical data

Function	Range	Accuracy
Current accuracy	20 – 2000% of In	±1% of In
Accuracy in tracking the theoretical wear characteristics		5%

Table 0-59 Technical data of the circuit breaker wear monitoring function

Parameters

Enumerated parameters							
Parameter name	Title	Selection range	Default				
Disabling or enabling the operation of the function							
CBWear_Oper_EPar_	Operation	Off, On	Off				

Table 0-60 Enumerated parameter of the circuit breaker wear monitoring function

Integer parameter

Parameter name	Title	Unit	Min	Мах	Step	Default	
Permitted number of trip operation if the breaking current is 1kA							
CBWear_CycNumIn_IPar_	CycNum - 1kA		1	100000	1	50000	
Permitted number of trip operation if the breaking current is InTrip (see floating parameter "Rated Trip Current")							
CBWear_CycNumInTrip_IPar_	CycNum – I Rated Trip		1	100000	1	100	
Permitted level of the weighted sum of the breaking currents							
CBWear_CycNumAlm_IPar_	CycNum - Alarm		1	100000	1	50000	

Table 0-61 Integer parameters of the circuit breaker wear monitoring function

+33(0)1 48 15 09 09

DVEZ Bay Control Unit Operation Manual

Page 39 / 64

Float point parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Rated breaking current of the circuit breaker						
CBWear_InTrCB_FPar_	Rated Trip Current	kA	10	100	0.01	10
Minimum level of the current below which the procedure to find the highest breaking current is stopped						
CBWear_Imin_FPar_	Min Current	kA	0.10	0.50	0.01	0.10

Table 0-62 Float parameter of the circuit breaker wear monitoring function

Binary output status signal						
Binary output status signal	Signal title	Explanation				
Alarm signal of the function block						
CBWear_Alarm_GrI_	Alarm	Alarm signal is generated if the weighted sum of the breaking currents is above the permitted level				

Table 0-63 Binary output status signal of the circuit breaker wear monitoring function

Binary input status signals

The binary inputs are signals influencing the operation of the circuit breaker wear monitoring function. These signals are the results of logic equations graphically edited by the user.

Binary input status signals	Signal title	Explanation
Disabling the function		
CBWear_Blk_GrO_	Blk	The programmed True state of this input disables the operation of the function
Open state of the circuit breaker		
CBWear_Open_GrO_	Open	The open state of the circuit breaker is needed to stop the procedure to find the maximum breaking current
Closed state of the circuit breaker		
CBWear_Closed_GrO_	Closed	The closed state of the circuit breaker is needed to perform the procedure to find the maximum breaking current
Trip command to the circuit breaker		
CBWear_Trip_GrO_	Trip	This signal starts the procedure to find the highest breaking current
Reset command		
CBWear_Reset_GrO_	Reset	If this input is programmed to logic True, at maintenance the weighted sum of the breaking currents can be set to 0

Table 0-64 Binary input status signals of the circuit breaker wear monitoring function

Disconnector control function (DisConn)

The Disconnector control function block can be used to integrate the disconnector control of the Protecta device into the station control system and to apply active scheme screens of the local LCD of the device.

The Disconnector control function block receives remote commands from the SCADA system and local commands from the local LCD of the device, performs the prescribed checking and transmits the commands to the disconnector. It processes the status signals received from the disconnector and offers them to the status display of the local LCD and to the SCADA system.

Main features:

- Local (LCD of the device) and Remote (SCADA) operation modes can be enabled or disabled individually.
- Interlocking functions can be programmed by the user applying the inputs "EnaOff" (enabled trip command) and "EnaOn" (enabled close command), using the graphic equation editor.
- Programmed conditions can be used to temporarily disable the operation of the function block using the graphic equation editor.
- The function block supports the control models prescribed by the IEC 61850 standard.
- All necessary timing tasks are performed within the function block:
 - Time limitation to execute a command
 - Command pulse duration
 - Filtering the intermediate state of the disconnector
 - Controlling the individual steps of the manual commands
 - Sending trip and close commands to the disconnector
- Operation counter
- Event reporting

The Disconnector control function block has binary input signals. The conditions are defined by the user applying the graphic equation editor. The signals of the disconnector control are seen in the binary input status list.

Technical data

Function	Accuracy
Operate time accuracy	±5% or ±15 ms, whichever is greater

	Table 0-65	Technical	data o	f the	disconnector	control	function
--	------------	-----------	--------	-------	--------------	---------	----------

Parameters

Linumerated parameters					
Parameter name	Title	Selection range	Default		
The control model of the disconnector node according to the IEC 61850 standard					
DisConn_ctlMod_EPar_ ControlModel* Direct normal, Direct enhanced, SBO enhanced Direct normal			Direct normal		
Type of switch					
DisConn_SwTyp_EPar_	Type of Switch	N/A,Load break, Disconnector, Earthing Switch, HS Earthing Switch	Disconnector		

*ControlModel

- Direct normal: only command transmission
- Direct enhanced: command transmission with status check and command supervision
- SBO enhanced: Select Before Operate mode with status check and command supervision

Table 0-66 Enumerated parameters of the disconnector control function

+33(0)1 48 15 09 09

DVEZ Bay Control Unit Operation Manual

Page 41 / 64

Boolean barameter	Boolean	parameter
-------------------	---------	-----------

Boolean parameter	Title	Explanation
DisConn_DisOverR_BPar_	Forced check	If true, then the check function cannot be neglected by the check attribute defined by the IEC 61850 standard

Table 0-67 Boolean parameter of the disconnector control function

Timer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Timeout for signaling failed operatio	n					
DisConn_TimOut_TPar_	Max.Operating time	msec	10	20000	1	1000
Duration of the generated On and Off impulse						
DisConn_Pulse_TPar_	Pulse length	msec	50	30000	1	100
Waiting time, at expiry intermediate	state of the disconnector is	reported				
DisConn_MidPos_TPar_	Max.Intermediate time	msec	20	30000	1	100
Duration of the waiting time between object selection and command selection. At timeout no command is performed						
DisConn_SBOTimeout_ TPar_	SBO Timeout	msec	1000	20000	1	5000

Table 0-68 Timer parameters of the disconnector control function

Available internal status variable and command channel

To generate an active scheme on the local LCD, there is an internal status variable indicating the state of the disconnector. Different graphic symbols can be assigned to the values. (See Chapter 3.2 of the document "EuroCAP configuration tool for Protecta devices").

Status variable	Title	Explanation
		Can be:
		0: Intermediate
DisConn l_stVal_Ist_	Status	1: Off
		2: On
		3:Bad

The available control channel to be selected is:

Command channel	Title	Explanation
		Can be:
DisConn _Oper_Con_	Operation	On
		Off

Using this channel, the pushbuttons on the front panel of the device can be assigned to close or open the disconnector. These are the "Local commands".

+33(0)1 48 15 09 09

Ethernet Links function (Ethlinks)

The Protecta device constantly checks the statuses of its connections to the outside world (wherever possible). These statuses can be seen on the **status/log** page in the advanced menu on the web page of the device.

When further indications are needed or the signals of the statuses (such as events, logic signals for the user logic, LEDs etc.), the Ethernet Links function block makes these available for the user.

Ports

The function can check the following types of communication ports:

- Fiber Optic (MM multi mode)
- Fiber Optic (SM single mode)
- RJ45
- PRP/HSR
- EOB (Ethernet On Board on the front HMI of the device)

See the Protecta Hardware Description (different document) for the list of the CPU modules that contain any of these ports.

Ethernet Links function overview

The graphic appearance of the function block is shown on Figure 0-2. These blocks show all binary input and output status signals, which are applicable in the graphic equation editor.

Et	nLinks
	CR1
	SB2F
	PB
	Front

Settings

There are no settings for this function block.

Function I/O

This section describes briefly the analogue and digital inputs and outputs of the function block.

This function block owns only binary output signals.

Binary output signals (graphed input statuses)

The binary output status signals of the Ethernet Links function. **P**arts written in **bold** are seen on the function block in the logic editor.

BINARY OUTPUT SIGNAL	SIGNAL TITLE	EXPLANATION
EthLnk_ SB1 _GrI_	Station Bus1	Active if the first (upper) fiber optic port of the CPU module has an active connection.
EthLnk_ SB2F _GrI_	Station Bus2 – Fiber	Active if the second (middle) fiber optic port of the CPU module has an active connection.
EthLnk_ SB2RJ _GrI_	Station Bus2 –RJ4	Active if the RJ45 port of the CPU module has an active connection.
EthLnk_ PB _GrI_	Process Bus	Active if the third (lower) fiber optic port of the CPU module has an active connection
EthLnk_ Front _GrI_	RJ45/EOB on front panel	Active if the front RJ45 port (or EOB) has an active connection

Table 0-69 The binary output status signals of the ethernet links function

DVEZ Bay Control Unit Operation Manual

Page 43 / 64

On-line data

Visible values on the on-line data page:

SIGNAL TITLE	DIMENSION	EXPLANATION
Station Bus1	-	Active if the first (upper) fiber optic port of the CPU module has an active connection.
Station Bus2 – Fiber	-	Active if the second (middle) fiber optic port of the CPU module has an active connection.
Station Bus2 –RJ4	-	Active if the RJ45 port of the CPU module has an active connection.
Process Bus	-	Active if the third (lower) fiber optic port of the CPU module has an active connection
RJ45/EOB on front panel	-	Active if the front RJ45 port (or EOB) has an active connection

Table 0-70 The measured analogue values of the ethernet links function

Events

The following events are generated in the event list, as well as sent to SCADA according to the configuration.

EVENT	VALUE	EXPLANATION						
Station Bus1	off, on	Active if the first (upper) fiber optic port of the CPU module has an active connection.						
Station Bus2 – Fiber	off, on	Active if the second (middle) fiber optic port of the CPU module has an active connection.						
Station Bus2 –RJ4	off, on	Active if the RJ45 port of the CPU module has an act connection.						
Process Bus	off, on	Active if the third (lower) fiber optic port of the CPU module has an active connection						
RJ45/EOB on front panel	off, on	Active if the front RJ45 port (or EOB) has an active connection						

Table 0-71 Events of the ethernet links function

+33(0)1 48 15 09 09

Dead line detection function (DLD)

The "Dead Line Detection" (DLD) function generates a signal indicating the dead or live state of the line. Additional signals are generated to indicate if the phase voltages and phase currents are above the pre-defined limits.

The task of the "Dead Line Detection" (DLD) function is to decide the Dead line/Live line state.

<u>Criteria of "Dead line" state</u>: all three phase voltages are below the voltage setting value AND all three currents are below the current setting value.

Criteria of "Live line" state: all three phase voltages are above the voltage setting value.

The details are described in the document *Dead line detection protection function block description*.

Technical data

Function	Value	Accuracy
Pick-up voltage		1%
Operation time	<20ms	
Reset ratio	0.95	

Table 0-72 Technical data of the dead line detection function

Parameters Integer parameters

Integer parameters						
Parameter name	Title	Unit	Min	Max	Step	Default
Integer parameters of the dead line of	letection function					
DLD_ULev_IPar_	Min. Operate Voltage	%	10	100	1	60
DLD_ILev_IPar_	Min. Operate Current	%	2	100	1	10

Table 0-73 The integer parameters of the dead line detection function

Voltage transformer supervision function (VTS60)

The voltage transformer supervision function generates a signal to indicate an error in the voltage transformer secondary circuit. This signal can serve, for example, as a warning, indicating disturbances in the measurement, or it can disable the operation of the distance protection function if appropriate measured voltage signals are not available for a distance decision.

The voltage transformer supervision function is designed to detect faulty asymmetrical states of the voltage transformer circuit caused, for example, by a broken conductor in the secondary circuit.

(Another method for detecting voltage disturbances is the supervision of the auxiliary contacts of the miniature circuit breakers in the voltage transformer secondary circuits. This function is not described here.)

The user has to generate graphic equations for the application of the signal of this voltage transformer supervision function.

This function is interconnected with the "dead line detection function". Although the dead line detection function is described fully in a separate document, the explanation necessary to understand the operation of the VT supervision function is repeated also in this document.

The voltage transformer supervision function can be used in three different modes of application:

Zero sequence detection (for typical applications in systems with grounded neutral): "VT failure" signal is generated if the residual voltage (3Uo) is above the preset voltage value AND the residual current (3Io) is below the preset current value.

<u>Negative sequence detection</u> (for typical applications in systems with isolated or resonant grounded (Petersen) neutral): "VT failure" signal is generated if the negative sequence voltage component (U2) is above the preset voltage value AND the negative sequence current component (I2) is below the preset current value.

<u>Special application</u>: "VT failure" signal is generated if the residual voltage (3Uo) is above the preset voltage value AND the residual current (3Io) AND the negative sequence current component (I2) are below the preset current values.

The voltage transformer supervision function can be activated if "Live line" status is detected for at least 200 ms. This delay avoids mal-operation at line energizing if the poles of the circuit breaker make contact with a time delay. The function is set to be inactive if "Dead line" status is detected.

If the conditions specified by the selected mode of operation are fulfilled (for at least 4 milliseconds) then the voltage transformer supervision function is activated and the operation signal is generated. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)

NOTE: For the operation of the voltage transformer supervision function the "Dead line detection function" must be operable as well: it must be enabled by binary parameter setting, and its blocking signal may not be active.

If, in the active state, the conditions for operation are no longer fulfilled, the resetting of the function depends on the mode of operation of the primary circuit:

- If the "Live line" state is valid, then the function resets after approx. 200 ms of time delay. (When evaluating this time delay, the natural operating time of the applied Fourier algorithm must also be considered.)
- If the "Dead line" state is started and the "VTS Failure" signal has been continuous for at least 100 ms, then the "VTS failure" signal does not reset; it is generated continuously even when the line is in a disconnected state. Thus, the "VTS Failure" signal remains active at reclosing.
- If the "Dead line" state is started and the "VTS Failure" signal has not been continuous for at least 100 ms, then the "VTS failure" signal resets.

Technical data		
Function	Value	Accuracy
Pick-up voltage		
Io=0A		<1%
I2=0A		<1%
Operation time	<20ms	
Reset ratio	0.95	

Table 0-74 Technical data of the voltage transformer supervision function

DVEZ Bay Control Unit Operation Manual

Rev. : A Page 46 / 64

Parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Integer parameters of the	e dead line detection function					
DLD_ULev_IPar_	Min Operate Voltage	%	10	100	1	60
DLD_ILev_IPar_	Min Operate Current	%	2	100	1	10
Starting voltage and current parameter for residual and negative sequence detection:						
VTS_Uo_IPar_	Start URes	%	5	50	1	30
VTS_Io_IPar_	Start IRes	%	10	50	1	10
VTS_Uneg_IPar_	Start UNeg	%	5	50	1	10
VTS Ineq IPar	Start INeg	%	10	50	1	10

Table 0-75 The integer parameters of the voltage transformer supervision function

Enumerated parameter Parameter name Title Selection range Default Parameter for type selection VTS_Oper_EPar_ Operation Off, Zero sequence, Neg. sequence, Special Zero sequence

Table 0-76 The enumerated parameter of the voltage transformer supervision function

info@microener.com

+33(0)1 48 15 09 09

DVEZ Bay Control Unit Operation Manual

Current unbalance function (VCB60)

The current unbalance protection function (VCB60) can be applied to detect unexpected asymmetry in current measurement.

The applied method selects maximum and minimum phase currents (RMS value of the fundamental Fourier components). If the difference between them is above the setting limit, the function generates a start signal. It is a necessary precondition of start signal generation that the maximum of the currents be above 10 % of the rated current and below 150% of the rated current.

The Fourier calculation modules calculate the RMS value of the basic Fourier current components of the phase currents individually. They are not part of the VCB60 function; they belong to the preparatory phase.

The analog signal processing module processes the RMS value of the basic Fourier current components of the phase currents to prepare the signals for the decision. It calculates the maximum and the minimum value of the RMS values and the difference between the maximum and minimum of the RMS values of the fundamental Fourier components of the phase currents as a percentage of the maximum of these values (Δ I>). If the maximum of the currents is above 10 % of the rated current and below 150% of the rated current and the Δ I> value is above the limit defined by the preset parameter (Start Current Diff) an output is generated to the decision module.

The decision logic module combines the status signals to generate the starting signal and the trip command of the function.

The trip command is generated after the defined time delay if trip command is enabled by the Boolean parameter setting.

The function can be disabled by parameter setting, and by an input signal programmed by the user with the graphic programming tool.

Technical data					
Function	Value	Accuracy			
Pick-up starting accuracy at In		< 2 %			
Reset ratio	0.95				
Operate time	70 ms				

Table 0-77 Technical data of the current unbalance function

Parameters Enumerated parameter Parameter name Title Selection range Default Selection of the operating mode VCB60_Oper_EPar_ Operation On

Table 0-78 The enumerated parameter of the current unbalance function

Boolean parameter			
Parameter name	Title	Explanation	Default
Selection for trip command			
VCB60_StOnly_BPar_	Start Signal Only	0 to generate trip command	0

Table 0-79 The boolean parameter of the current unbalance function

Integer parameter

Parameter name	Title	Unit	Min	Мах	Step	Default
Phase difference current setting						
VCB60_StCurr_IPar_	Start Current Diff	%	10	90	1	50

Table 0-80 The integer parameter of the current unbalance function

Timer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Time delay						
VCB60_Del_TPar_	Time Delay	msec	100	60000	100	1000

Table 0-81 The timer parameter of the current unbalance function

DVEZ Bay Control Unit Operation Manual

Measuring functions

The measured values can be checked on the touch-screen of the device in the "On-line functions" page, or using an Internet browser of a connected computer. The displayed values are secondary voltages and currents, except the block "Line measurement". This specific block displays the measured values in primary units, using VT and CT primary value settings.

Analog value	Explanation
VT4 module	
Voltage Ch – U1	RMS value of the Fourier fundamental harmonic voltage component in phase L1
Angle Ch – U1	Phase angle of the Fourier fundamental harmonic voltage component in phase L1*
Voltage Ch – U2	RMS value of the Fourier fundamental harmonic voltage component in phase L2
Angle Ch – U2	Phase angle of the Fourier fundamental harmonic voltage component in phase L2*
Voltage Ch – U3	RMS value of the Fourier fundamental harmonic voltage component in phase L3
Angle Ch – U3	Phase angle of the Fourier fundamental harmonic voltage component in phase L3*
Voltage Ch – U4	RMS value of the Fourier fundamental harmonic voltage component in Channel U4
Angle Ch – U4	Phase angle of the Fourier fundamental harmonic voltage component in Channel U4*
CT4 module	
Current Ch - I1	RMS value of the Fourier fundamental harmonic current component in phase L1
Angle Ch - I1	Phase angle of the Fourier fundamental harmonic current component in phase L1*
Current Ch - I2	RMS value of the Fourier fundamental harmonic current component in phase L2
Angle Ch - I2	Phase angle of the Fourier fundamental harmonic current component in phase L2*
Current Ch - I3	RMS value of the Fourier fundamental harmonic current component in phase L3
Angle Ch - I3	Phase angle of the Fourier fundamental harmonic current component in phase L3*
Current Ch - I4	RMS value of the Fourier fundamental harmonic current component in Channel I4
Angle Ch - I4	Phase angle of the Fourier fundamental harmonic current component in Channel I4*
Distance protection function	n (DIS21_HV)
Fault location	Measured distance to fault
Fault react.	Measured reactance in the fault loop
L1N loop R	Resistive component value of impedance in L1-N loop
L1N loop X	Reactive component value of impedance in L1-N loop
L2N loop R	Resistive component value of impedance in L2-N loop
L2N loop X	Reactive component value of impedance in L2-N loop
L3N loop R	Resistive component value of impedance in L3-N loop
L3N loop X	Reactive component value of impedance in L3-N loop
L12 loop R	Resistive component value of impedance in L12 loop
L12 loop X	Reactive component value of impedance in L12 loop
L23 loop R	Resistive component value of impedance in L23 loop
L23 loop X	Reactive component value of impedance in L23 loop
L31 loop R	Resistive component value of impedance in L31 loop
L31 loop X	Reactive component value of impedance in L31 loop

*

DVEZ Bay Control Unit Operation Manual

Page 49 / 64

Synchrocheck function (SYI	V25)
Voltage Diff	Voltage different value
Frequency Diff	Frequency different value
Angle Diff	Angle different value
Line measurement (MXU_L,) (here the displayed information means primary value)
Active Power – P	Three-phase active power
Reactive Power – Q	Three-phase reactive power
Apparent Power – S	Three-phase power based on true RMS voltage and current measurement
Current L1	True RMS value of the current in phase L1
Current L2	True RMS value of the current in phase L2
Current L3	True RMS value of the current in phase L3
Voltage L1	True RMS value of the voltage in phase L1
Voltage L2	True RMS value of the voltage in phase L2
Voltage L3	True RMS value of the voltage in phase L3
Voltage L12	True RMS value of the voltage between phases L1 L2
Voltage L23	True RMS value of the voltage between phases L2 L3
Voltage L31	True RMS value of the voltage between phases L3 L1
Frequency	Frequency
Metering (MTR)	
Forward MWh	Forward MWh
Backward MWh	Backward MWh
Forward MVArh	Forward MVArh
Backward MVArh	Backward MVArh
Line thermal protection (TT	"R49L)
Calc. Temperature	Calculated line temperature

The reference angle is the phase angle of "Voltage Ch - U1"

Table 0-82 Measured analog values

info@microener.com

+33(0)1 48 15 09 09

Current input function (CT4)

If the factory configuration includes a current transformer hardware module, the current input function block is automatically configured among the software function blocks. Separate current input function blocks are assigned to each current transformer hardware module.

A current transformer hardware module is equipped with four special intermediate current transformers. (See Chapter 5 of the Protecta hardware description document.) As usual, the first three current inputs receive the three phase currents (IL1, IL2, IL3), the fourth input is reserved for zero sequence current, for the zero sequence current of the parallel line or for any additional current. Accordingly, the first three inputs have common parameters while the fourth current input needs individual setting.

The role of the current input function block is to

- set the required parameters associated to the current inputs,
- deliver the sampled current values for disturbance recording,
- perform the basic calculations
 - Fourier basic harmonic magnitude and angle,
 - True RMS value;
- provide the pre-calculated current values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the current input algorithm

The current input function block receives the sampled current values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See parameters CT4_Ch13Nom_EPar_ (Rated Secondary I1-3) and CT4_Ch4Nom_EPar_ (Rated Secondary I4). The options to choose from are 1A or 5A (in special applications, 0.2A or 1A). This parameter influences the internal number format and, naturally, accuracy. (A small current is processed with finer resolution if 1A is selected.)

If needed, the phase currents can be inverted by setting the parameter CT4_Ch13Dir_EPar_ (Starpoint I1-3). This selection applies to each of the channels IL1, IL2 and IL3. The fourth current channel can be inverted by setting the parameter CT4_Ch4Dir_EPar (Direction I4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated currents of the main current transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc.

Technical data					
Function	Range	Accuracy			
Current accuracy	20 – 2000% of In	±1% of In			

Table 0-83 Technical data of the current input

Parameters

Enumerated parameters							
Parameter name	Title	Selection range	Default				
Rated secondary current of the first three input channels. 1A or 5A is selected by parameter setting, no hardware modification is needed.							
CT4_Ch13Nom_EPar_	Rated Secondary I1-3	1A,5A	1A				
Rated secondary current of the fourth input channel. 1A or 5A is selected by parameter setting, no hardware modification is needed.							
CT4_Ch4Nom_EPar_	Rated Secondary I4	1A,5A (0.2A or 1A)	1A				
Definition of the positive direction of the first three currents, given by location of the secondary star connection point							
CT4_Ch13Dir_EPar_	Starpoint I1-3	Line,Bus	Line				
Definition of the positive direction of the fourth current, given as normal or inverted							
CT4_Ch4Dir_EPar_	Direction I4	Normal, Inverted	Normal				

Table 0-84 The enumerated parameters of the current input function

Page 51 / 64

Floating point parameters

Parameter name	Title	Dim.	Min	Max	Default
Rated primary current of ch	nannel1				
CT4_PriI1_FPar_	Rated Primary I1	А	100	4000	1000
Rated primary current of ch	nannel2				
CT4_PriI2_FPar	Rated Primary I2	А	100	4000	1000
Rated primary current of ch	nannel3				
CT4_PriI3_FPar_	Rated Primary I3	А	100	4000	1000
Rated primary current of ch	nannel4				
CT4_PriI4_FPar_	Rated Primary I4	А	100	4000	1000

Table 0-85 The floating point parameters of the current input function

NOTE: The rated primary current of the channels is not needed for the current input function block itself. These values are passed on to the subsequent function blocks.

The **measured values** of the current input function block.

Measured value	Dim.	Explanation		
Current Ch - I1	A(secondary)	Fourier basic component of the current in channel IL1		
Angle Ch - I1	degree	Vector position of the current in channel IL1		
Current Ch – I2	A(secondary)	Fourier basic component of the current in channel IL2		
Angle Ch – I2	degree	Vector position of the current in channel IL2		
Current Ch – I3	A(secondary)	Fourier basic component of the current in channel IL3		
Angle Ch – I3	degree	Vector position of the current in channel IL3		
Current Ch – I4	A(secondary)	Fourier basic component of the current in channel I4		
Angle Ch – I4	degree	Vector position of the current in channel I4		

Table 0-86 The measured analogue values of the current input function

NOTE1: The scaling of the Fourier basic component is such that if pure sinusoid 1A RMS of the rated frequency is injected, the displayed value is 1A. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference of the vector position depends on the device configuration. If a voltage input module is included, then the reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module. If no voltage input module is configured, then the reference vector (vector with angle 0 degree) is the vector tiput channel of the first applied current input module.

Figure 0-3 shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document " Protecta Remote user interface description".)

Current Ch - I1	0.84	A
Angle Ch - I1	-9	deg
Current Ch - I2	0.84	Α
Angle Ch - I2	-129	deg
Current Ch - I3	0.85	Α
Angle Ch - I3	111	deg
Current Ch - I4	0.00	Α
Angle Ch - I4	0	deg

Figure 0-3 Example: On-line displayed values for the current input module

DVEZ Bay Control Unit Operation Manual

Voltage input function (VT4)

If the factory configuration includes a voltage transformer hardware module, the voltage input function block is automatically configured among the software function blocks. Separate voltage input function blocks are assigned to each voltage transformer hardware module.

A voltage transformer hardware module is equipped with four special intermediate voltage transformers. (See Chapter 6 of the Protecta hardware description document.) As usual, the first three voltage inputs receive the three phase voltages (UL1, UL2, UL3), the fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. All inputs have a common parameter for type selection: 100V or 200V.

Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device.

The role of the voltage input function block is to

- set the required parameters associated to the voltage inputs,
 - deliver the sampled voltage values for disturbance recording,
- perform the basic calculations
 - \circ \quad Fourier basic harmonic magnitude and angle,
 - True RMS value;
- provide the pre-calculated voltage values to the subsequent software modules,
- deliver the basic calculated values for on-line displaying.

Operation of the voltage input algorithm

The voltage input function block receives the sampled voltage values from the internal operating system. The scaling (even hardware scaling) depends on parameter setting. See the parameter VT4_Type_EPar_ (Range). The options to choose from are 100V or 200V. This parameter influences the internal number format and, naturally, accuracy. (A small voltage is processed with finer resolution if 100V is selected.)

The connection of the first three VT secondary winding must be set to reflect actual physical connection. The associated parameter is VT4_Ch13Nom_EPar_ (Connection U1-3). The selection can be: Ph-N, Ph-Ph or Ph-N-Isolated.

The Ph-N option is applied in solidly grounded networks, where the measured phase voltage is never above 1.5-Un. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-NEUTRAL voltage.

The Ph-N option is applied in compensated or isolated networks, where the measured phase voltage can be above 1.5-Un even in normal operation. In this case the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage.

If phase-to-phase voltage is connected to the VT input of the device, then the Ph-Ph option is to be selected. Here, the primary rated voltage of the VT must be the value of the rated PHASE-TO-PHASE voltage. This option must not be selected if the distance protection function is supplied from the VT input.

The fourth input is reserved for zero sequence voltage or for a voltage from the other side of the circuit breaker for synchron switching. Accordingly, the connected voltage must be identified with parameter setting VT4_Ch4Nom_EPar_ (Connection U4). Here, phase-to-neutral or phase-to-phase voltage can be selected: Ph-N,Ph-Ph

If needed, the phase voltages can be inverted by setting the parameter VT4_Ch13Dir_EPar_ (Direction U1-3). This selection applies to each of the channels UL1, UL2 and UL3. The fourth voltage channel can be inverted by setting the parameter VT4_Ch4Dir_EPar_ (Direction U4). This inversion may be needed in protection functions such as distance protection, differential protection or for any functions with directional decision, or for checking the voltage vector positions.

Additionally, there is a correction factor available if the rated secondary voltage of the main voltage transformer (e.g. 110V) does not match the rated input of the device. The related parameter is VT4_CorrFact_IPar_ (VT correction). As an example: if the rated secondary voltage of the main voltage transformer is 110V, then select Type 100 for the parameter "Range" and the required value to set here is 110%.

These sampled values are available for further processing and for disturbance recording.

The performed basic calculation results the Fourier basic harmonic magnitude and angle and the true RMS value of the voltages. These results are processed by subsequent protection function blocks and they are available for on-line displaying as well.

The function block also provides parameters for setting the primary rated voltages of the main voltage transformer. This function block does not need that parameter setting. These values are passed on to function blocks such as displaying primary measured values, primary power calculation, etc. Concerning the rated voltage, see the instructions related to the parameter for the connection of the first three VT secondary winding.

DVEZ Bay Control Unit Operation Manual

Rev. : A Page 53 / 64

Parameters

Enumerated parameters							
Parameter name	Title	Selection range Def					
Rated secondary voltage of the input channels. 100 V or 200V is selected by parameter setting, no hardware modification is needed.							
VT4_Type_EPar_	Range	Туре 100, Туре 200	Туре 100				
Connection of the first three vol	tage inputs (main VT secondary)						
VT4_Ch13Nom_EPar_	Connection U1-3	Ph-N, Ph-Ph, Ph-N-Isolated	Ph-N				
Selection of the fourth channel i	nput: phase-to-neutral or phase-to-	phase voltage					
VT4_Ch4Nom_EPar_	Connection U4	Ph-N,Ph-Ph Ph-P					
Definition of the positive direction of the first three input channels, given as normal or inverted							
VT4_Ch13Dir_EPar_ Direction U1-3 Normal,Inverted Nor		Normal					
Definition of the positive direction of the fourth voltage, given as normal or inverted							
VT4_Ch4Dir_EPar_	Direction U4	Normal, Inverted	Normal				

Table 0-87 The enumerated parameters of the voltage input function

Integer parameter						
Parameter name	Title	Unit	Min	Max	Step	Default
Voltage correction						
VT4_CorrFact_IPar_	VT correction	%	100	115	1	100

Table 0-88 The integer parameter of the voltage input function

Floating point parameters

Parameter name	Title	Dim.	Min	Max	Default		
Rated primary voltage of channel	Rated primary voltage of channel1						
VT4_PriU1_FPar	Rated Primary U1	kV	1	1000	100		
Rated primary voltage of channel2							
VT4_PriU2_FPar	Rated Primary U2	kV	1	1000	100		
Rated primary voltage of channel3							
VT4_PriU3_FPar	Rated Primary U3	kV	1	1000	100		
Rated primary voltage of channel4							
VT4_PriU4_FPar	Rated Primary U4	kV	1	1000	100		

Table 0-89 The floating point parameters of the voltage input function

NOTE: The rated primary voltage of the channels is not needed for the voltage input function block itself. These values are passed on to the subsequent function blocks.

Function	Range	Accuracy		
Voltage accuracy	30% 130%	< 0.5 %		

Table 0-90 Technical data of the voltage input

Measured values

Measured value	Dim.	Explanation
Voltage Ch - U1	V(secondary)	Fourier basic component of the voltage in channel UL1
Angle Ch - U1	degree	Vector position of the voltage in channel UL1
Voltage Ch – U2	V(secondary)	Fourier basic component of the voltage in channel UL2
Angle Ch – U2	degree	Vector position of the voltage in channel UL2
Voltage Ch – U3	V(secondary)	Fourier basic component of the voltage in channel UL3
Angle Ch – U3	degree	Vector position of the voltage in channel UL3
Voltage Ch – U4	V(secondary)	Fourier basic component of the voltage in channel U4
Angle Ch – U4	degree	Vector position of the voltage in channel U4

Table 0-91 The measured analogue values of the voltage input function

NOTE1: The scaling of the Fourier basic component is such if pure sinusoid 57V RMS of the rated frequency is injected, the displayed value is 57V. (The displayed value does not depend on the parameter setting values "Rated Secondary".)

NOTE2: The reference vector (vector with angle 0 degree) is the vector calculated for the first voltage input channel of the first applied voltage input module.

MICROENER	DVEZ Bay Control Unit	FDE N°: 20GJ1151137	
info@microener.com +33(0)1 48 15 09 09	Operation Manual	Rev. : A Page 54 / 64	

The figure below shows an example of how the calculated Fourier components are displayed in the on-line block. (See the document Protecta "Remote user interface description".)

[-] VT4 module		
Voltage Ch - U1	56.75	v
Angle Ch - U1	0	deg
Voltage Ch - U2	51.46	¥
Angle Ch - U2	-112	deg
Voltage Ch - U3	60.54	¥
Angle Ch - U3	128	deg
Voltage Ch - U4	0.00	¥
Angle Ch - U4	0	deg

Figure 0-4 Example: On-line displayed values for the voltage input module

+33(0)1 48 15 09 09

DVEZ Bay Control Unit Operation Manual

Line measurement function (MXU)

The measurement

The input values of the Protecta devices are the secondary signals of the voltage transformers and those of the current transformers.

These signals are pre-processed by the "Voltage transformer input" function block and by the "Current transformer input" function block. These function blocks are described in separate documents. The pre-processed values include the Fourier basic harmonic phasors of the voltages and currents and the true RMS values. Additionally, it is in these function blocks that parameters are set concerning the voltage ratio of the primary voltage transformers and current ratio of the current transformers.

Based on the pre-processed values and the measured transformer parameters, the "Line measurement" function block calculates - depending on the hardware and software configuration - the primary RMS values of the voltages and currents and some additional values such as active and reactive power, symmetrical components of voltages and currents. These values are available as primary quantities and they can be displayed on the on-line screen of the device or on the remote user interface of the computers connected to the communication network and they are available for the SCADA system using the configured communication system.

Reporting the measured values and the changes

It is usual for the SCADA systems that they sample the measured and calculated values in regular time periods and additionally they receive the changed values as reports at the moment when any significant change is detected in the primary system. The "Line measurement" function block is able to perform such reporting for the SCADA system.

Operation of the line measurement function block

The **inputs** of the line measurement function are

- the Fourier components and true RMS values of the measured voltages and currents,
- frequency measurement,
- parameters.

The **outputs** of the line measurement function are

- displayed measured values,
- reports to the SCADA system.

NOTE: the scaling values are entered as parameter setting for the "Voltage transformer input" function block and for the "Current transformer input" function block.

The measured values

The **measured values** of the line measurement function depend on the hardware configuration. As an example, Table *0-92* shows the list of the measured values available in a configuration for solidly grounded networks.

Page 56 / 64

Measured value	Explanation		
MXU_P_OLM_	Active Power – P (Fourier base harmonic value)		
MXU_Q_OLM_	Reactive Power – Q (Fourier base harmonic value)		
MXU_S_OLM_	Apparent Power – S (Fourier base harmonic value)		
MXU_I1_OLM_	Current L1		
MXU_I2_OLM_	Current L2		
MXU_I3_OLM_	Current L3		
MXU_U1_OLM_	Voltage L1		
MXU_U2_OLM_	Voltage L2		
MXU_U3_OLM_	Voltage L3		
MXU_U12_OLM_	Voltage L12		
MXU_U23_OLM_	Voltage L23		
MXU_U31_OLM_	Voltage L31		
MXU f OLM	Frequency		

Table 0-92 Example: Measured values in a configuration for solidly grounded networks

Another example is Figure 0-5, where the measured values available are shown as on-line information in a configuration for compensated networks.

Active Power - P	17967.19	kW
Reactive Power - Q	10414.57	k¥Aı
Current L1	97	Α
Current L2	97	Α
Current L3	97	А
Voltage L12	120.0	k¥
Voltage L23	120.0	k¥
Voltage L31	120.0	k¥
Residual Voltage	0.0	k¥
Frequency	50.00	Hz

Figure 0-5 Example: Measured values in a configuration for compensated networks

The available quantities are described in the configuration description documents.

Reporting the measured values and the changes

For reporting, additional information is needed, which is defined in parameter setting. As an example, in a configuration for solidly grounded networks the following parameters are available:

Page 57 / 64

Enumerated parameters

Parameter name	Title	Selection range	Default		
Selection of the reporting mode for active power measurement					
MXU_PRepMode_EPar_	Operation ActivePower Off, Amplitude, Integrated		Amplitude		
Selection of the reporting mode for	or reactive power measurement				
MXU_QRepMode_EPar_	Operation ActivePower	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting mode for apparent power measurement					
MXU_SRepMode_EPar_	Operation ApparPower	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting mode for	or current measurement				
MXU_IRepMode_EPar_	Operation Current	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting mode for	or voltage measurement				
MXU_URepMode_EPar_	Operation Voltage	Off, Amplitude, Integrated	Amplitude		
Selection of the reporting mode for	or frequency measurement				
MXU_fRepMode_EPar_ Operation Frequency		Off, Amplitude, Integrated	Amplitude		

Table 0-93 The enumerated parameters of the line measurement function

The selection of the reporting mode items is explained in Figure 0-6 and in Figure 0-7.

"Amplitude" mode of reporting

If the "Amplitude" mode is selected for reporting, a report is generated if the measured value leaves the deadband around the previously reported value. As an example, Figure 0.6 shows that the current becomes higher than the value reported in "report1" PLUS the Deadband value, this results "report2", etc.

For this mode of operation, the Deadband parameters are explained in Table 0-94.

The "Range" parameters in Table 0-94 are needed to evaluate a measurement as "out-of-range".

Rev.: A Page 58 / 64

loating point parameters						
Parameter name	Title	Dim.	Min	Max	Step	Default
Deadband value for the active	e power					
MXU_PDeadB_FPar_	Deadband value - P	MW	0.1	100000	0.01	10
Range value for the active por	Range value for the active power					
MXU_PRange_FPar_	Range value - P	MW	1	100000	0.01	500
Deadband value for the reacti	ve power					
MXU_QDeadB_FPar_	Deadband value - Q	MVAr	0.1	100000	0.01	10
Range value for the reactive p	ower					
MXU_QRange_FPar_	Range value - Q	MVAr	1	100000	0.01	500
Deadband value for the appar	ent power					
MXU_SDeadB_FPar_	Deadband value - S	MVA	0.1	100000	0.01	10
Range value for the apparent	power					
MXU_SRange_FPar_	Range value - S	MVA	1	100000	0.01	500
Deadband value for the current	nt					
MXU_IDeadB_FPar_	Deadband value - I	А	1	2000	1	10
Range value for the current						
MXU_IRange_FPar_	Range value - I	А	1	5000	1	500
Deadband value for the phase	e-to-neutral voltage					
MXU_UPhDeadB_	Deadband value – U ph-	k)/	0.1	100	0.01	1
FPar_	Ν	ΓV.	0.1	100	0.01	T
Range value for the phase-to-	neutral voltage					
MXU_UPhRange_	Range value –	kV	1	1000	0.1	231
FPar_	U ph-N		-	1000	011	201
Deadband value for the phase	e-to-phase voltage	1	1			
MXU_UPPDeadB_	Deadband value – U ph-	kV	0.1	100	0.01	1
FPar_	ph		-			
Range value for the phase-to-	phase voltage	1		1	1	
MXU_UPPRange_	Range value –	kV	1	1000	0.1	400
	Upn-pn					
Deadband value for the current	nt Des dhe e douelous of	11-	0.01		0.01	0.02
MIXU_TDeadB_FPar_	Deadband value - t	HZ	0.01	1	0.01	0.02
	Demonstration of	11-	0.05	10	0.01	
MXU_fRange_FPar_	Range value - f	Hz	0.05	10	0.01	5

Table 0-94 The floating-point parameters of the line measurement function

Amplitude

Figure 0-6 Reporting if 'Amplitude " mode is selected

"Integral" mode of reporting

If the "Integrated" mode is selected for reporting, a report is generated if the time integral of the measured value since the last report gets becomes larger, in the positive or negative direction, then the (deadband*1sec) area. As an example, Figure *0-7* shows that the integral of the current in time becomes higher than the Deadband value multiplied by 1sec, this results "report2", etc.

Integrated

Figure 0-7 Reporting if "Integrated" mode is selected

Periodic reporting

Periodic reporting is generated independently of the changes of the measured values when the defined time period elapses. The required parameter setting is shown in Table *0-95*.

Integer parameters

Parameter name	Title	Unit	Min	Max	Step	Default
Reporting time period for the active power						
MXU_PIntPer_IPar_	Report period P	sec	0	3600	1	0
Reporting time period for the reactive	oower					
MXU_QIntPer_IPar_	Report period Q	sec	0	3600	1	0
Reporting time period for the apparent power						
MXU_SIntPer_IPar_	Report period S	sec	0	3600	1	0
Reporting time period for the voltage						
MXU_UIntPer_IPar_	Report period U	sec	0	3600	1	0
Reporting time period for the current						
MXU_IIntPer_IPar_	Report period I	sec	0	3600	1	0
Reporting time period for the frequence	ý					
MXU_fIntPer_IPar_	Report period f	sec	0	3600	1	0

Table 0-95 The integer parameters of the line measurement function

If the reporting time period is set to 0, then no periodic reporting is performed for this quantity.

All reports can be disabled for a quantity if the reporting mode is set to "Off". See Table 0-93.

Technical data				
Function	Range	Accuracy		
Current accuracy				
with CT/E1E1 or CT/E102 modules	0,2 In – 0,5 In	±2%, ±1 digit		
with CT/SISE of CT/SID2 modules	0,5 In – 20 In	±1%, ±1 digit		
with CT/1500 module	0,03 In – 2 In	±0,5%, ±1 digit		
Voltage accuracy	5 – 150% of Un	$\pm 0.5\%$ of Un, ± 1 digit		
Power accuracy	l>5% In	±3%, ±1 digit		
Frequency accuracy	U>3.5%Un 45Hz – 55Hz	2mHz		

Table 0-96 Technical data of line measurement

+33(0)1 48 15 09 09

Average and maximum measuerement function

The measurement

The input values of the Protecta devices are the secondary signals of the voltage transformers and those of the current transformers.

These signals are pre-processed by the "Voltage transformer input" function block and by the "Current transformer input" function block. These function blocks are described in separate documents. The pre-processed values include the Fourier basic harmonic phasors of the voltages and currents and the true RMS values. Additionally, it is in these function blocks that parameters are set concerning the voltage ratio of the primary voltage transformers and current ratio of the current transformers.

Based on the pre-processed analog signals, several function blocks perform additional calculation, e.g.: active and reactive power, frequency, temperature, impedances, higher harmonics, symmetrical components, etc.

The "Average and maximum" function block calculates average values and locates maximum values of the assigned (measured and calculated) analog signals.

Operation of the function block

The **input** of the function can be:

 Any single calculated analog value: active and reactive power, frequency, temperature, impedances, higher harmonics, symmetrical components, etc. depending on the assignment in the configuration.

The **outputs** of the function are:

- Average of the analog value,
- Maximum of the analog value.

The average and the maximum values are automatically reported to the SCADA system. The maximum is logged and is sent automatically to the HMI, the average however is logged only if a binary input of the function block enables this activity.

Reporting the measured values and the changes

The average calculation needs a time span for calculation; this is given as a parameter value, set in minutes (or the function is switched off). When the timer expires, the calculated average is reported automatically to the SCADA system. Depending on the requirements, this value is also logged and is sent to the local HMI. This activity is controlled by a binary input of the function block.

The identification of the maximum value needs also a time span; this is given as a parameter value, set in days. When the timer expires, the found maximum value is reported automatically to the SCADA system. Additionally, this value is also logged and is sent to the local HMI.

The starting of the timer is controlled by the internal real-time clock of the device. The moment of time for the starting of the processing cycles is set by a parameter value.

Table 0-97 The enumerated parameter of the average and maximum measurement function

+33(0)1 48 15 09 09

DVEZ Bay Control Unit Operation Manual

Page 62 / 64

Integer parameter

Parameter name	Title	Unit	Min	Max	Step	Default
Time window for finding the maximum value						
MXU_MaxResInt_IPar_T	MaxReset Interval	day	0	365	1	1
Moment of time for reporting and reset						
MXU_MaxResTime_IPar_T	MaxReset Time	hour	0	23	1	12

Table 0-98 The integer parameters of the average and maximum measurement function

Binary input status signals

The average and maximum measurement function block has **binary input signals**, which serve the purpose of resetting the values and enabling logging the average value. **The conditions are defined by the user, applying the graphic equation editor.**

Binary status signal	Explanation
MXU_ Reset _GrO_IL1 *	This signal resets both the calculated average and the found maximum value. At the end of the running cycles, the values found during the shortened cycle will be processed.
MXU_ DemHMIEna _GrO_IL1	During the active state of this signal also the calculated average value is logged

* Note: In this example "IL1" is indicating that in the instant of the function block processes the RMS value of the current in line 1

Table 0-99 The binary input signal for the average and maximum measurement function

The function does not have binary output signals.

Event recorder

The events of the device and those of the protection functions are recorded with a time stamp of 1 ms time resolution. This information with indication of the generating function can be checked on the touch-screen of the device in the "Events" page, or using an Internet browser of a connected computer.

49 rue de l'Université - 93160 Noisy le Grand – Tél : +33 1 48 15 09 01 – Fax : +33 1 43 05 08 24 info@microener.com – www.microener.com